Step
*
1
2
of Lemma
qexp-eq-q-rng-nexp
1. n : ℕ
2. r : ℚ
3. v1 : ℤ
4. v2 : ℕ+
5. qrep(r) = <v1, v2> ∈ (ℤ × ℕ+)
⊢ mk-rational(v1^n;v2^n) = q-rng-nexp(<v1, v2>;n) ∈ ℚ
BY
{ xxx(ThinVar `r'
THEN RepUR ``q-rng-nexp rng_nexp mon_nat_op nat_op itop`` 0
THEN (RepeatFor 2 (MoveToConcl (-1)) THEN NatInd 1)
THEN Reduce 0
THEN Auto
THEN (RW (AddrC [3] UnrollRecursionC) 0 THEN Reduce 0 THEN Try ((AutoSplit THEN RWO "3<" 0 THEN Auto)))⋅)xxx }
1
1. n : ℤ
2. v1 : ℤ
3. v2 : ℕ+
⊢ mk-rational(1;1) = 1 ∈ ℚ
2
1. n : ℤ
2. 0 < n
3. ∀v1:ℤ. ∀v2:ℕ+.
(mk-rational(v1^(n - 1);v2^(n - 1)) = (Y (λitop,ub. if 0 <z ub then (itop (ub - 1)) * <v1, v2> else 1 fi ) (n - 1))\000C ∈ ℚ)
4. v1 : ℤ
5. v2 : ℕ+
6. 0 < n
⊢ mk-rational(v1^n;v2^n) = (mk-rational(v1^(n - 1);v2^(n - 1)) * <v1, v2>) ∈ ℚ
Latex:
Latex:
1. n : \mBbbN{}
2. r : \mBbbQ{}
3. v1 : \mBbbZ{}
4. v2 : \mBbbN{}\msupplus{}
5. qrep(r) = <v1, v2>
\mvdash{} mk-rational(v1\^{}n;v2\^{}n) = q-rng-nexp(<v1, v2>n)
By
Latex:
xxx(ThinVar `r'
THEN RepUR ``q-rng-nexp rng\_nexp mon\_nat\_op nat\_op itop`` 0
THEN (RepeatFor 2 (MoveToConcl (-1)) THEN NatInd 1)
THEN Reduce 0
THEN Auto
THEN (RW (AddrC [3] UnrollRecursionC) 0
THEN Reduce 0
THEN Try ((AutoSplit THEN RWO "3<" 0 THEN Auto)))\mcdot{})xxx
Home
Index