Nuprl Lemma : qle_antisymmetry_qorder
∀[a,b:ℚ]. (a = b ∈ ℚ) supposing ((b ≤ a) and (a ≤ b))
Proof
Definitions occuring in Statement :
qle: r ≤ s
,
rationals: ℚ
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
subtype_rel: A ⊆r B
,
qadd_grp: <ℚ+>
,
grp_car: |g|
,
pi1: fst(t)
,
qle: r ≤ s
Lemmas referenced :
grp_leq_antisymmetry,
qadd_grp_wf2,
ocgrp_subtype_ocmon
Rules used in proof :
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isectElimination,
thin,
hypothesis,
applyEquality,
sqequalRule
Latex:
\mforall{}[a,b:\mBbbQ{}]. (a = b) supposing ((b \mleq{} a) and (a \mleq{} b))
Date html generated:
2020_05_20-AM-09_14_54
Last ObjectModification:
2020_01_24-PM-07_21_14
Theory : rationals
Home
Index