Nuprl Lemma : qless_transitivity_2_qorder
∀[a,b,c:ℚ].  (a < c) supposing ((b ≤ c) and a < b)
Proof
Definitions occuring in Statement : 
qle: r ≤ s
, 
qless: r < s
, 
rationals: ℚ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
qadd_grp: <ℚ+>
, 
grp_car: |g|
, 
pi1: fst(t)
, 
qless: r < s
, 
uimplies: b supposing a
, 
grp_lt: a < b
, 
set_lt: a <p b
, 
guard: {T}
, 
oset_of_ocmon: g↓oset
, 
dset_of_mon: g↓set
, 
set_car: |p|
, 
implies: P 
⇒ Q
, 
qle: r ≤ s
, 
grp_leq: a ≤ b
, 
infix_ap: x f y
Lemmas referenced : 
grp_lt_transitivity_2, 
qadd_grp_wf2, 
ocgrp_subtype_ocmon, 
assert_witness, 
set_blt_wf, 
oset_of_ocmon_wf0, 
mon_subtype_grp_sig, 
dmon_subtype_mon, 
abdmonoid_dmon, 
ocmon_subtype_abdmonoid, 
subtype_rel_transitivity, 
ocgrp_wf, 
ocmon_wf, 
abdmonoid_wf, 
dmon_wf, 
mon_wf, 
grp_sig_wf, 
istype-assert, 
grp_le_wf, 
rationals_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesis, 
applyEquality, 
sqequalRule, 
isect_memberFormation_alt, 
instantiate, 
independent_isectElimination, 
hypothesisEquality, 
independent_functionElimination, 
because_Cache, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
universeIsType
Latex:
\mforall{}[a,b,c:\mBbbQ{}].    (a  <  c)  supposing  ((b  \mleq{}  c)  and  a  <  b)
Date html generated:
2020_05_20-AM-09_14_37
Last ObjectModification:
2020_02_03-PM-02_48_17
Theory : rationals
Home
Index