Nuprl Lemma : qmul-zero-div

[a:ℚ]. ∀[b:ℤ-o].  (((0/b) a) 0 ∈ ℚ)


Proof




Definitions occuring in Statement :  qdiv: (r/s) qmul: s rationals: int_nzero: -o uall: [x:A]. B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T prop: int_nzero: -o qdiv: (r/s) subtype_rel: A ⊆B uimplies: supposing a true: True squash: T and: P ∧ Q guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q nequal: a ≠ b ∈  not: ¬A uiff: uiff(P;Q)
Lemmas referenced :  equal-wf-T-base rationals_wf qmul_wf int_nzero_wf int_nzero_properties qinv_wf int-subtype-rationals equal_wf squash_wf true_wf qmul_zero_qrng iff_weakening_equal int-equal-in-rationals equal-wf-base int_subtype_base not_wf assert-qeq assert_wf qeq_wf2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin hyp_replacement hypothesis equalitySymmetry applyLambdaEquality extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality baseClosed sqequalRule isect_memberEquality axiomEquality because_Cache setElimination rename applyEquality independent_isectElimination natural_numberEquality lambdaEquality imageElimination equalityTransitivity universeEquality productElimination imageMemberEquality independent_functionElimination intEquality addLevel impliesFunctionality

Latex:
\mforall{}[a:\mBbbQ{}].  \mforall{}[b:\mBbbZ{}\msupminus{}\msupzero{}].    (((0/b)  *  a)  =  0)



Date html generated: 2018_05_21-PM-11_50_44
Last ObjectModification: 2017_07_26-PM-06_44_06

Theory : rationals


Home Index