Step
*
3
2
1
1
of Lemma
rat-complex-boundary-remove1
1. k : ℕ
2. n : ℕ
3. K : n-dim-complex
4. c : ℚCube(k)
5. (c ∈ K)
6. f : ℚCube(k)
7. ¬((∃c:ℚCube(k). ((c ∈ K) ∧ (↑Inhabited(c)) ∧ f ≤ c ∧ (dim(f) = (dim(c) - 1) ∈ ℤ))) ∧ (↑in-complex-boundary(k;f;K)))
8. f ≤ c
9. dim(f) = (dim(c) - 1) ∈ ℤ
10. ↑isEven(||filter(λc.is-rat-cube-face(k;f;c);K)||)
⊢ ∃c1:ℚCube(k). (((c1 ∈ K) ∧ (¬(c1 = c ∈ ℚCube(k)))) ∧ (↑Inhabited(c1)) ∧ f ≤ c1 ∧ (dim(f) = (dim(c1) - 1) ∈ ℤ))
BY
{ (Assert (c ∈ filter(λc.is-rat-cube-face(k;f;c);K)) BY
((BLemma `member_filter` THEN Auto) THEN EAuto 1)) }
1
1. k : ℕ
2. n : ℕ
3. K : n-dim-complex
4. c : ℚCube(k)
5. (c ∈ K)
6. f : ℚCube(k)
7. ¬((∃c:ℚCube(k). ((c ∈ K) ∧ (↑Inhabited(c)) ∧ f ≤ c ∧ (dim(f) = (dim(c) - 1) ∈ ℤ))) ∧ (↑in-complex-boundary(k;f;K)))
8. f ≤ c
9. dim(f) = (dim(c) - 1) ∈ ℤ
10. ↑isEven(||filter(λc.is-rat-cube-face(k;f;c);K)||)
11. (c ∈ filter(λc.is-rat-cube-face(k;f;c);K))
⊢ ∃c1:ℚCube(k). (((c1 ∈ K) ∧ (¬(c1 = c ∈ ℚCube(k)))) ∧ (↑Inhabited(c1)) ∧ f ≤ c1 ∧ (dim(f) = (dim(c1) - 1) ∈ ℤ))
Latex:
Latex:
1. k : \mBbbN{}
2. n : \mBbbN{}
3. K : n-dim-complex
4. c : \mBbbQ{}Cube(k)
5. (c \mmember{} K)
6. f : \mBbbQ{}Cube(k)
7. \mneg{}((\mexists{}c:\mBbbQ{}Cube(k). ((c \mmember{} K) \mwedge{} (\muparrow{}Inhabited(c)) \mwedge{} f \mleq{} c \mwedge{} (dim(f) = (dim(c) - 1))))
\mwedge{} (\muparrow{}in-complex-boundary(k;f;K)))
8. f \mleq{} c
9. dim(f) = (dim(c) - 1)
10. \muparrow{}isEven(||filter(\mlambda{}c.is-rat-cube-face(k;f;c);K)||)
\mvdash{} \mexists{}c1:\mBbbQ{}Cube(k). (((c1 \mmember{} K) \mwedge{} (\mneg{}(c1 = c))) \mwedge{} (\muparrow{}Inhabited(c1)) \mwedge{} f \mleq{} c1 \mwedge{} (dim(f) = (dim(c1) - 1)))
By
Latex:
(Assert (c \mmember{} filter(\mlambda{}c.is-rat-cube-face(k;f;c);K)) BY
((BLemma `member\_filter` THEN Auto) THEN EAuto 1))
Home
Index