Step
*
3
2
1
1
1
of Lemma
rat-complex-boundary-remove1
1. k : ℕ
2. n : ℕ
3. K : n-dim-complex
4. c : ℚCube(k)
5. (c ∈ K)
6. f : ℚCube(k)
7. ¬((∃c:ℚCube(k). ((c ∈ K) ∧ (↑Inhabited(c)) ∧ f ≤ c ∧ (dim(f) = (dim(c) - 1) ∈ ℤ))) ∧ (↑in-complex-boundary(k;f;K)))
8. f ≤ c
9. dim(f) = (dim(c) - 1) ∈ ℤ
10. ↑isEven(||filter(λc.is-rat-cube-face(k;f;c);K)||)
11. (c ∈ filter(λc.is-rat-cube-face(k;f;c);K))
⊢ ∃c1:ℚCube(k). (((c1 ∈ K) ∧ (¬(c1 = c ∈ ℚCube(k)))) ∧ (↑Inhabited(c1)) ∧ f ≤ c1 ∧ (dim(f) = (dim(c1) - 1) ∈ ℤ))
BY
{ ((RepeatFor 2 (MoveToConcl (-1)) THEN (GenConclTerm ⌜filter(λc.is-rat-cube-face(k;f;c);K)⌝⋅ THENA Auto)) THEN D -2) }
1
1. k : ℕ
2. n : ℕ
3. K : n-dim-complex
4. c : ℚCube(k)
5. (c ∈ K)
6. f : ℚCube(k)
7. ¬((∃c:ℚCube(k). ((c ∈ K) ∧ (↑Inhabited(c)) ∧ f ≤ c ∧ (dim(f) = (dim(c) - 1) ∈ ℤ))) ∧ (↑in-complex-boundary(k;f;K)))
8. f ≤ c
9. dim(f) = (dim(c) - 1) ∈ ℤ
10. filter(λc.is-rat-cube-face(k;f;c);K) = [] ∈ (ℚCube(k) List)
⊢ (↑isEven(||[]||))
⇒ (c ∈ [])
⇒ (∃c1:ℚCube(k). (((c1 ∈ K) ∧ (¬(c1 = c ∈ ℚCube(k)))) ∧ (↑Inhabited(c1)) ∧ f ≤ c1 ∧ (dim(f) = (dim(c1) - 1) ∈ ℤ)))
2
1. k : ℕ
2. n : ℕ
3. K : n-dim-complex
4. c : ℚCube(k)
5. (c ∈ K)
6. f : ℚCube(k)
7. ¬((∃c:ℚCube(k). ((c ∈ K) ∧ (↑Inhabited(c)) ∧ f ≤ c ∧ (dim(f) = (dim(c) - 1) ∈ ℤ))) ∧ (↑in-complex-boundary(k;f;K)))
8. f ≤ c
9. dim(f) = (dim(c) - 1) ∈ ℤ
10. u : ℚCube(k)
11. v : ℚCube(k) List
12. filter(λc.is-rat-cube-face(k;f;c);K) = [u / v] ∈ (ℚCube(k) List)
⊢ (↑isEven(||[u / v]||))
⇒ (c ∈ [u / v])
⇒ (∃c1:ℚCube(k). (((c1 ∈ K) ∧ (¬(c1 = c ∈ ℚCube(k)))) ∧ (↑Inhabited(c1)) ∧ f ≤ c1 ∧ (dim(f) = (dim(c1) - 1) ∈ ℤ)))
Latex:
Latex:
1. k : \mBbbN{}
2. n : \mBbbN{}
3. K : n-dim-complex
4. c : \mBbbQ{}Cube(k)
5. (c \mmember{} K)
6. f : \mBbbQ{}Cube(k)
7. \mneg{}((\mexists{}c:\mBbbQ{}Cube(k). ((c \mmember{} K) \mwedge{} (\muparrow{}Inhabited(c)) \mwedge{} f \mleq{} c \mwedge{} (dim(f) = (dim(c) - 1))))
\mwedge{} (\muparrow{}in-complex-boundary(k;f;K)))
8. f \mleq{} c
9. dim(f) = (dim(c) - 1)
10. \muparrow{}isEven(||filter(\mlambda{}c.is-rat-cube-face(k;f;c);K)||)
11. (c \mmember{} filter(\mlambda{}c.is-rat-cube-face(k;f;c);K))
\mvdash{} \mexists{}c1:\mBbbQ{}Cube(k). (((c1 \mmember{} K) \mwedge{} (\mneg{}(c1 = c))) \mwedge{} (\muparrow{}Inhabited(c1)) \mwedge{} f \mleq{} c1 \mwedge{} (dim(f) = (dim(c1) - 1)))
By
Latex:
((RepeatFor 2 (MoveToConcl (-1))
THEN (GenConclTerm \mkleeneopen{}filter(\mlambda{}c.is-rat-cube-face(k;f;c);K)\mkleeneclose{}\mcdot{} THENA Auto)
)
THEN D -2
)
Home
Index