Step
*
3
2
2
1
1
1
of Lemma
rat-complex-boundary-remove1
.....equality.....
1. k : ℕ
2. n : ℕ
3. K : n-dim-complex
4. c : ℚCube(k)
5. (c ∈ K)
6. f : ℚCube(k)
7. ¬((∃c:ℚCube(k). ((c ∈ K) ∧ (↑Inhabited(c)) ∧ f ≤ c ∧ (dim(f) = (dim(c) - 1) ∈ ℤ)))
∧ (↑isOdd(||filter(λc.is-rat-cube-face(k;f;c);K)||)))
8. f ≤ c
9. dim(f) = (dim(c) - 1) ∈ ℤ
10. ↑isEven(||filter(λc.is-rat-cube-face(k;f;c);K)||)
⊢ ||filter(λc.is-rat-cube-face(k;f;c);K)||
= (1 + ||filter(λc.is-rat-cube-face(k;f;c);filter(λa.(¬brceq(k;a;c));K))||)
∈ ℤ
BY
{ ((Assert ↑is-rat-cube-face(k;f;c) BY
(RWO "assert-is-rat-cube-face" 0 THEN Auto))
THEN DVar `K'
THEN (Assert no_repeats(ℚCube(k);K) BY
Auto)
THEN Lemmaize [5;-1;-2]
THEN Auto) }
1
1. k : ℕ
2. K : ℚCube(k) List
3. f : ℚCube(k)
4. c : ℚCube(k)
5. (c ∈ K)
6. f ≤ c
7. dim(f) = (dim(c) - 1) ∈ ℤ
8. ↑is-rat-cube-face(k;f;c)
9. no_repeats(ℚCube(k);K)
⊢ ||filter(λc.is-rat-cube-face(k;f;c);K)||
= (1 + ||filter(λc.is-rat-cube-face(k;f;c);filter(λa.(¬brceq(k;a;c));K))||)
∈ ℤ
Latex:
Latex:
.....equality.....
1. k : \mBbbN{}
2. n : \mBbbN{}
3. K : n-dim-complex
4. c : \mBbbQ{}Cube(k)
5. (c \mmember{} K)
6. f : \mBbbQ{}Cube(k)
7. \mneg{}((\mexists{}c:\mBbbQ{}Cube(k). ((c \mmember{} K) \mwedge{} (\muparrow{}Inhabited(c)) \mwedge{} f \mleq{} c \mwedge{} (dim(f) = (dim(c) - 1))))
\mwedge{} (\muparrow{}isOdd(||filter(\mlambda{}c.is-rat-cube-face(k;f;c);K)||)))
8. f \mleq{} c
9. dim(f) = (dim(c) - 1)
10. \muparrow{}isEven(||filter(\mlambda{}c.is-rat-cube-face(k;f;c);K)||)
\mvdash{} ||filter(\mlambda{}c.is-rat-cube-face(k;f;c);K)||
= (1 + ||filter(\mlambda{}c.is-rat-cube-face(k;f;c);filter(\mlambda{}a.(\mneg{}\msubb{}rceq(k;a;c));K))||)
By
Latex:
((Assert \muparrow{}is-rat-cube-face(k;f;c) BY
(RWO "assert-is-rat-cube-face" 0 THEN Auto))
THEN DVar `K'
THEN (Assert no\_repeats(\mBbbQ{}Cube(k);K) BY
Auto)
THEN Lemmaize [5;-1;-2]
THEN Auto)
Home
Index