Step
*
1
2
of Lemma
rat-complex-subdiv_wf
1. k : ℕ
2. n : ℕ
3. K : ℚCube(k) List
4. no_repeats(ℚCube(k);K)
5. (∀c,d∈K. Compatible(c;d))
6. (∀c∈K.dim(c) = n ∈ ℤ)
7. K ∈ {c:ℚCube(k)| ↑Inhabited(c)} List
8. (K)' ∈ ℚCube(k) List
⊢ (∀l∈map(λc.half-cubes-of(k;c);K).no_repeats(ℚCube(k);l))
BY
{ (BLemma `l_all_iff`
THEN Auto
THEN (RWO "member_map" (-1) THENA Auto)
THEN ExRepD
THEN Reduce -1
THEN RWO "-1" 0
THEN Auto) }
1
1. k : ℕ
2. n : ℕ
3. K : ℚCube(k) List
4. no_repeats(ℚCube(k);K)
5. (∀c,d∈K. Compatible(c;d))
6. (∀c∈K.dim(c) = n ∈ ℤ)
7. K ∈ {c:ℚCube(k)| ↑Inhabited(c)} List
8. (K)' ∈ ℚCube(k) List
9. l : ℚCube(k) List
10. y : {c:ℚCube(k)| ↑Inhabited(c)}
11. (y ∈ K)
12. l = half-cubes-of(k;y) ∈ (ℚCube(k) List)
⊢ no_repeats(ℚCube(k);half-cubes-of(k;y))
Latex:
Latex:
1. k : \mBbbN{}
2. n : \mBbbN{}
3. K : \mBbbQ{}Cube(k) List
4. no\_repeats(\mBbbQ{}Cube(k);K)
5. (\mforall{}c,d\mmember{}K. Compatible(c;d))
6. (\mforall{}c\mmember{}K.dim(c) = n)
7. K \mmember{} \{c:\mBbbQ{}Cube(k)| \muparrow{}Inhabited(c)\} List
8. (K)' \mmember{} \mBbbQ{}Cube(k) List
\mvdash{} (\mforall{}l\mmember{}map(\mlambda{}c.half-cubes-of(k;c);K).no\_repeats(\mBbbQ{}Cube(k);l))
By
Latex:
(BLemma `l\_all\_iff`
THEN Auto
THEN (RWO "member\_map" (-1) THENA Auto)
THEN ExRepD
THEN Reduce -1
THEN RWO "-1" 0
THEN Auto)
Home
Index