Nuprl Lemma : rat-complex-subdiv_wf
∀[k,n:ℕ]. ∀[K:n-dim-complex].  ((K)' ∈ n-dim-complex)
Proof
Definitions occuring in Statement : 
rat-complex-subdiv: (K)', 
rational-cube-complex: n-dim-complex, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
sq_stable: SqStable(P), 
true: True, 
pi2: snd(t), 
pi1: fst(t), 
rat-point-interval: [a], 
rat-interval-face: I ≤ J, 
rat-cube-face: c ≤ d, 
band: p ∧b q, 
rat-interval-intersection: I ⋂ J, 
is-half-interval: is-half-interval(I;J), 
inhabited-rat-interval: Inhabited(I), 
rational-interval: ℚInterval, 
rat-cube-intersection: c ⋂ d, 
rev_uimplies: rev_uimplies(P;Q), 
l_all: (∀x∈L.P[x]), 
compatible-rat-cubes: Compatible(c;d), 
rational-cube: ℚCube(k), 
rev_implies: P ⇐ Q, 
l_disjoint: l_disjoint(T;l1;l2), 
less_than': less_than'(a;b), 
no_repeats: no_repeats(T;l), 
decidable: Dec(P), 
squash: ↓T, 
less_than: a < b, 
le: A ≤ B, 
lelt: i ≤ j < k, 
pairwise: (∀x,y∈L.  P[x; y]), 
so_apply: x[s1;s2], 
so_lambda: λ2x y.t[x; y], 
rat-complex-subdiv: (K)', 
cand: A c∧ B, 
top: Top, 
false: False, 
exists: ∃x:A. B[x], 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
not: ¬A, 
ge: i ≥ j , 
bfalse: ff, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
guard: {T}, 
sq_type: SQType(T), 
or: P ∨ Q, 
rat-cube-dimension: dim(c), 
iff: P ⇐⇒ Q, 
prop: ℙ, 
uimplies: b supposing a, 
so_apply: x[s], 
nat: ℕ, 
int_seg: {i..j-}, 
so_lambda: λ2x.t[x], 
and: P ∧ Q, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
subtype_rel: A ⊆r B, 
rational-cube-complex: n-dim-complex, 
member: t ∈ T, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
half-cube-dimension, 
compatible-half-cubes, 
member-rat-complex-subdiv, 
compatible-rat-cubes-refl, 
compatible-rat-cubes-symm, 
Error :pairwise-iff, 
sq_stable__no_repeats, 
member_map, 
qavg-eq-iff-7, 
istype-true, 
qle_reflexivity, 
qavg-eq-iff-8, 
qle-qavg-iff-4, 
qavg-eq-iff-2, 
member_wf, 
uiff_transitivity, 
qavg-same, 
istype-universe, 
true_wf, 
squash_wf, 
uiff_transitivity3, 
qavg-eq-iff-4, 
qavg-eq-iff-3, 
qavg-eq-iff-1, 
qavg-qle-iff-2, 
qle_antisymmetry, 
qmin-eq-iff-2, 
qmax-eq-iff-2, 
qmin-eq-iff-1, 
qmax-eq-iff-1, 
qmax-eq-iff, 
qmin-eq-iff, 
rat-interval-intersection_wf, 
rat-interval-face_wf, 
qle_transitivity_qorder, 
qle-qavg-iff-1, 
qavg-qle-iff-1, 
subtype_rel_self, 
rational-interval_wf, 
qmin_ub, 
qmax_lb, 
assert_of_band, 
assert_of_bor, 
iff_transitivity, 
iff_weakening_equal, 
assert-q_le-eq, 
q_le_wf, 
rationals_wf, 
equal_wf, 
bfalse_wf, 
assert-qeq, 
btrue_wf, 
band_wf, 
qeq_wf2, 
bor_wf, 
qmin_wf, 
qmax_wf, 
qavg_wf, 
qle_wf, 
rat-cube-intersection_wf, 
assert-inhabited-rat-cube, 
assert-is-half-cube, 
is-half-interval_wf, 
iff_weakening_uiff, 
is-half-cube_wf, 
select_wf, 
istype-false, 
int_seg_subtype_nat, 
select-map, 
istype-less_than, 
int_formula_prop_less_lemma, 
intformless_wf, 
istype-le, 
int_formula_prop_not_lemma, 
intformnot_wf, 
decidable__le, 
decidable__lt, 
int_seg_properties, 
top_wf, 
subtype_rel_list, 
length_wf, 
int_seg_wf, 
length-map, 
no_repeats-concat, 
istype-nat, 
rational-cube-complex_wf, 
l_all_wf2, 
compatible-rat-cubes_wf, 
pairwise_wf2, 
no_repeats_wf, 
istype-assert, 
half-cubes-of_wf, 
list_wf, 
map_wf, 
concat_wf, 
assert_wf, 
subtype_rel_list_set, 
assert_witness, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_eq_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermVar_wf, 
itermConstant_wf, 
intformeq_wf, 
intformand_wf, 
full-omega-unsat, 
nat_properties, 
assert_of_bnot, 
eqff_to_assert, 
eqtt_to_assert, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
bool_cases, 
inhabited-rat-cube_wf, 
l_member_wf, 
le_wf, 
int_subtype_base, 
istype-int, 
lelt_wf, 
set_subtype_base, 
rat-cube-dimension_wf, 
equal-wf-base, 
l_all_iff, 
rational-cube_wf, 
list-subtype
Rules used in proof : 
baseClosed, 
imageMemberEquality, 
universeEquality, 
functionIsType, 
functionExtensionality, 
independent_pairEquality, 
hyp_replacement, 
inrFormation_alt, 
inlFormation_alt, 
unionEquality, 
productEquality, 
unionIsType, 
promote_hyp, 
functionEquality, 
sqequalBase, 
applyLambdaEquality, 
imageElimination, 
isectIsTypeImplies, 
axiomEquality, 
productIsType, 
dependent_set_memberEquality_alt, 
equalityIstype, 
setEquality, 
independent_pairFormation, 
voidElimination, 
isect_memberEquality_alt, 
int_eqEquality, 
dependent_pairFormation_alt, 
approximateComputation, 
equalitySymmetry, 
equalityTransitivity, 
cumulativity, 
instantiate, 
unionElimination, 
independent_functionElimination, 
universeIsType, 
inhabitedIsType, 
setIsType, 
because_Cache, 
independent_isectElimination, 
addEquality, 
natural_numberEquality, 
minusEquality, 
intEquality, 
lambdaEquality_alt, 
sqequalRule, 
dependent_functionElimination, 
productElimination, 
lambdaFormation_alt, 
applyEquality, 
rename, 
setElimination, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[k,n:\mBbbN{}].  \mforall{}[K:n-dim-complex].    ((K)'  \mmember{}  n-dim-complex)
Date html generated:
2019_10_29-AM-07_59_33
Last ObjectModification:
2019_10_22-AM-00_44_15
Theory : rationals
Home
Index