Nuprl Lemma : half-cube-dimension
∀[k:ℕ]. ∀[c:{c:ℚCube(k)| ↑Inhabited(c)} ]. ∀[h:ℚCube(k)].  ((↑is-half-cube(k;h;c)) ⇒ (dim(h) = dim(c) ∈ ℤ))
Proof
Definitions occuring in Statement : 
rat-cube-dimension: dim(c), 
inhabited-rat-cube: Inhabited(c), 
is-half-cube: is-half-cube(k;h;c), 
rational-cube: ℚCube(k), 
nat: ℕ, 
assert: ↑b, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
set: {x:A| B[x]} , 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
rat-cube-dimension: dim(c), 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
iff: P ⇐⇒ Q, 
true: True, 
rev_implies: P ⇐ Q, 
sq_type: SQType(T), 
all: ∀x:A. B[x], 
guard: {T}, 
rational-cube: ℚCube(k), 
nat: ℕ, 
rational-interval: ℚInterval, 
rat-interval-dimension: dim(I), 
is-half-interval: is-half-interval(I;J), 
or: P ∨ Q, 
squash: ↓T, 
prop: ℙ, 
rev_uimplies: rev_uimplies(P;Q), 
subtype_rel: A ⊆r B, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
le: A ≤ B, 
bfalse: ff, 
band: p ∧b q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
exists: ∃x:A. B[x], 
bnot: ¬bb, 
false: False, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
not: ¬A, 
inhabited-rat-interval: Inhabited(I), 
qavg: qavg(a;b), 
qless: r < s, 
grp_lt: a < b, 
set_lt: a <p b, 
set_blt: a <b b, 
infix_ap: x f y, 
set_le: ≤b, 
pi2: snd(t), 
oset_of_ocmon: g↓oset, 
dset_of_mon: g↓set, 
grp_le: ≤b, 
pi1: fst(t), 
qadd_grp: <ℚ+>, 
q_le: q_le(r;s), 
callbyvalueall: callbyvalueall, 
evalall: evalall(t), 
bor: p ∨bq, 
qpositive: qpositive(r), 
qsub: r - s, 
qadd: r + s, 
qmul: r * s, 
lt_int: i <z j, 
qeq: qeq(r;s), 
eq_int: (i =z j)
Lemmas referenced : 
assert-is-half-cube, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
iff_imp_equal_bool, 
inhabited-rat-cube_wf, 
btrue_wf, 
istype-true, 
istype-assert, 
is-half-cube_wf, 
int_seg_wf, 
ifthenelse_wf, 
squash_wf, 
true_wf, 
istype-universe, 
q_less_wf, 
qless-qavg-iff-1, 
qless_wf, 
qavg_wf, 
rationals_wf, 
subtype_rel_self, 
iff_weakening_equal, 
assert-q_less-eq, 
qavg-qless-iff-1, 
assert_wf, 
bor_wf, 
qeq_wf2, 
bool_cases, 
eqtt_to_assert, 
band_wf, 
assert-qeq, 
bfalse_wf, 
equal_wf, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bor, 
assert_of_band, 
eqff_to_assert, 
bool_cases_sqequal, 
assert-bnot, 
sum_wf, 
istype-int, 
istype-nat, 
rat-interval-dimension_wf, 
assert-inhabited-rat-cube, 
qle_wf, 
qmul_preserves_qle, 
qdiv_wf, 
qadd_wf, 
qmul_wf, 
int-subtype-rationals, 
qmul-qdiv-cancel, 
q_le_wf, 
assert-q_le-eq, 
qadd_preserves_qle, 
qadd_ac_1_q, 
qadd_inv_assoc_q, 
q_distrib, 
qmul_one_qrng, 
qadd_comm_q, 
qinverse_q, 
mon_ident_q
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
setElimination, 
thin, 
rename, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_isectElimination, 
instantiate, 
cumulativity, 
sqequalRule, 
independent_pairFormation, 
natural_numberEquality, 
inhabitedIsType, 
dependent_functionElimination, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
lambdaEquality_alt, 
axiomEquality, 
functionIsTypeImplies, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
setIsType, 
applyEquality, 
equalityIstype, 
universeIsType, 
unionElimination, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
promote_hyp, 
intEquality, 
unionEquality, 
productEquality, 
productIsType, 
unionIsType, 
inlFormation_alt, 
inrFormation_alt, 
equalityElimination, 
dependent_pairFormation_alt, 
voidElimination, 
functionIsType, 
sqequalBase, 
minusEquality
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[c:\{c:\mBbbQ{}Cube(k)|  \muparrow{}Inhabited(c)\}  ].  \mforall{}[h:\mBbbQ{}Cube(k)].
    ((\muparrow{}is-half-cube(k;h;c))  {}\mRightarrow{}  (dim(h)  =  dim(c)))
Date html generated:
2020_05_20-AM-09_19_49
Last ObjectModification:
2019_11_02-PM-07_36_37
Theory : rationals
Home
Index