Nuprl Lemma : half-cube-dimension
∀[k:ℕ]. ∀[c:{c:ℚCube(k)| ↑Inhabited(c)} ]. ∀[h:ℚCube(k)].  ((↑is-half-cube(k;h;c)) 
⇒ (dim(h) = dim(c) ∈ ℤ))
Proof
Definitions occuring in Statement : 
rat-cube-dimension: dim(c)
, 
inhabited-rat-cube: Inhabited(c)
, 
is-half-cube: is-half-cube(k;h;c)
, 
rational-cube: ℚCube(k)
, 
nat: ℕ
, 
assert: ↑b
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
rat-cube-dimension: dim(c)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
iff: P 
⇐⇒ Q
, 
true: True
, 
rev_implies: P 
⇐ Q
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
rational-cube: ℚCube(k)
, 
nat: ℕ
, 
rational-interval: ℚInterval
, 
rat-interval-dimension: dim(I)
, 
is-half-interval: is-half-interval(I;J)
, 
or: P ∨ Q
, 
squash: ↓T
, 
prop: ℙ
, 
rev_uimplies: rev_uimplies(P;Q)
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
bfalse: ff
, 
band: p ∧b q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
exists: ∃x:A. B[x]
, 
bnot: ¬bb
, 
false: False
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
not: ¬A
, 
inhabited-rat-interval: Inhabited(I)
, 
qavg: qavg(a;b)
, 
qless: r < s
, 
grp_lt: a < b
, 
set_lt: a <p b
, 
set_blt: a <b b
, 
infix_ap: x f y
, 
set_le: ≤b
, 
pi2: snd(t)
, 
oset_of_ocmon: g↓oset
, 
dset_of_mon: g↓set
, 
grp_le: ≤b
, 
pi1: fst(t)
, 
qadd_grp: <ℚ+>
, 
q_le: q_le(r;s)
, 
callbyvalueall: callbyvalueall, 
evalall: evalall(t)
, 
bor: p ∨bq
, 
qpositive: qpositive(r)
, 
qsub: r - s
, 
qadd: r + s
, 
qmul: r * s
, 
lt_int: i <z j
, 
qeq: qeq(r;s)
, 
eq_int: (i =z j)
Lemmas referenced : 
assert-is-half-cube, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
iff_imp_equal_bool, 
inhabited-rat-cube_wf, 
btrue_wf, 
istype-true, 
istype-assert, 
is-half-cube_wf, 
int_seg_wf, 
ifthenelse_wf, 
squash_wf, 
true_wf, 
istype-universe, 
q_less_wf, 
qless-qavg-iff-1, 
qless_wf, 
qavg_wf, 
rationals_wf, 
subtype_rel_self, 
iff_weakening_equal, 
assert-q_less-eq, 
qavg-qless-iff-1, 
assert_wf, 
bor_wf, 
qeq_wf2, 
bool_cases, 
eqtt_to_assert, 
band_wf, 
assert-qeq, 
bfalse_wf, 
equal_wf, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bor, 
assert_of_band, 
eqff_to_assert, 
bool_cases_sqequal, 
assert-bnot, 
sum_wf, 
istype-int, 
istype-nat, 
rat-interval-dimension_wf, 
assert-inhabited-rat-cube, 
qle_wf, 
qmul_preserves_qle, 
qdiv_wf, 
qadd_wf, 
qmul_wf, 
int-subtype-rationals, 
qmul-qdiv-cancel, 
q_le_wf, 
assert-q_le-eq, 
qadd_preserves_qle, 
qadd_ac_1_q, 
qadd_inv_assoc_q, 
q_distrib, 
qmul_one_qrng, 
qadd_comm_q, 
qinverse_q, 
mon_ident_q
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
setElimination, 
thin, 
rename, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_isectElimination, 
instantiate, 
cumulativity, 
sqequalRule, 
independent_pairFormation, 
natural_numberEquality, 
inhabitedIsType, 
dependent_functionElimination, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
lambdaEquality_alt, 
axiomEquality, 
functionIsTypeImplies, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
setIsType, 
applyEquality, 
equalityIstype, 
universeIsType, 
unionElimination, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
promote_hyp, 
intEquality, 
unionEquality, 
productEquality, 
productIsType, 
unionIsType, 
inlFormation_alt, 
inrFormation_alt, 
equalityElimination, 
dependent_pairFormation_alt, 
voidElimination, 
functionIsType, 
sqequalBase, 
minusEquality
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[c:\{c:\mBbbQ{}Cube(k)|  \muparrow{}Inhabited(c)\}  ].  \mforall{}[h:\mBbbQ{}Cube(k)].
    ((\muparrow{}is-half-cube(k;h;c))  {}\mRightarrow{}  (dim(h)  =  dim(c)))
Date html generated:
2020_05_20-AM-09_19_49
Last ObjectModification:
2019_11_02-PM-07_36_37
Theory : rationals
Home
Index