Step
*
1
2
2
1
1
2
1
of Lemma
reciprocal-qle-proof
1. e : ℚ
2. 0 < e
3. p : ℤ
4. q : ℤ
5. 0 < q
6. ¬(q = 0 ∈ ℚ)
7. e = (p/q) ∈ ℚ
8. ¬↑qeq(q;0)
9. 0 < p
10. q = (((q ÷ p) * p) + (q rem p)) ∈ ℤ
11. 0 ≤ (q rem p)
12. q rem p < p
13. 0 ≤ (q ÷ p)
14. m : ℕ+
15. ((q ÷ p) + 1) = m ∈ ℕ+
16. q < m * p
⊢ (1/m) ≤ (p/q)
BY
{ (QMul ⌜m⌝ 0⋅ THEN Auto) }
1
1. e : ℚ
2. 0 < e
3. p : ℤ
4. q : ℤ
5. 0 < q
6. ¬(q = 0 ∈ ℚ)
7. e = (p/q) ∈ ℚ
8. ¬↑qeq(q;0)
9. 0 < p
10. q = (((q ÷ p) * p) + (q rem p)) ∈ ℤ
11. 0 ≤ (q rem p)
12. q rem p < p
13. 0 ≤ (q ÷ p)
14. m : ℕ+
15. ((q ÷ p) + 1) = m ∈ ℕ+
16. q < m * p
⊢ 1 ≤ (m * (p/q))
Latex:
Latex:
1. e : \mBbbQ{}
2. 0 < e
3. p : \mBbbZ{}
4. q : \mBbbZ{}
5. 0 < q
6. \mneg{}(q = 0)
7. e = (p/q)
8. \mneg{}\muparrow{}qeq(q;0)
9. 0 < p
10. q = (((q \mdiv{} p) * p) + (q rem p))
11. 0 \mleq{} (q rem p)
12. q rem p < p
13. 0 \mleq{} (q \mdiv{} p)
14. m : \mBbbN{}\msupplus{}
15. ((q \mdiv{} p) + 1) = m
16. q < m * p
\mvdash{} (1/m) \mleq{} (p/q)
By
Latex:
(QMul \mkleeneopen{}m\mkleeneclose{} 0\mcdot{} THEN Auto)
Home
Index