Step
*
1
1
1
1
of Lemma
sbdecode_wf_gcd
1. L : ℕ2 List
2. v1 : ℕ+
3. v2 : ℕ+
4. (v1 ÷ gcd(v1;v2)) = v1 ∈ ℕ+
5. (v2 ÷ gcd(v1;v2)) = v2 ∈ ℕ+
6. L = sbcode(v1;v2) ∈ (ℕ2 List)
7. 0 < gcd(v1;v2)
8. v1 = ((v1 * gcd(v1;v2)) + (v1 rem gcd(v1;v2))) ∈ ℤ
9. 0 ≤ (v1 rem gcd(v1;v2))
10. v1 rem gcd(v1;v2) < gcd(v1;v2)
⊢ gcd(v1;v2) = 1 ∈ ℤ
BY
{ xxx((Assert ((v1 * gcd(v1;v2)) + (v1 rem gcd(v1;v2))) ≤ v1 BY Auto) THEN Decide ⌜2 ≤ gcd(v1;v2)⌝⋅ THEN Auto)xxx }
1
1. L : ℕ2 List
2. v1 : ℕ+
3. v2 : ℕ+
4. (v1 ÷ gcd(v1;v2)) = v1 ∈ ℕ+
5. (v2 ÷ gcd(v1;v2)) = v2 ∈ ℕ+
6. L = sbcode(v1;v2) ∈ (ℕ2 List)
7. 0 < gcd(v1;v2)
8. v1 = ((v1 * gcd(v1;v2)) + (v1 rem gcd(v1;v2))) ∈ ℤ
9. 0 ≤ (v1 rem gcd(v1;v2))
10. v1 rem gcd(v1;v2) < gcd(v1;v2)
11. ((v1 * gcd(v1;v2)) + (v1 rem gcd(v1;v2))) ≤ v1
12. 2 ≤ gcd(v1;v2)
⊢ gcd(v1;v2) = 1 ∈ ℤ
Latex:
Latex:
1. L : \mBbbN{}2 List
2. v1 : \mBbbN{}\msupplus{}
3. v2 : \mBbbN{}\msupplus{}
4. (v1 \mdiv{} gcd(v1;v2)) = v1
5. (v2 \mdiv{} gcd(v1;v2)) = v2
6. L = sbcode(v1;v2)
7. 0 < gcd(v1;v2)
8. v1 = ((v1 * gcd(v1;v2)) + (v1 rem gcd(v1;v2)))
9. 0 \mleq{} (v1 rem gcd(v1;v2))
10. v1 rem gcd(v1;v2) < gcd(v1;v2)
\mvdash{} gcd(v1;v2) = 1
By
Latex:
xxx((Assert ((v1 * gcd(v1;v2)) + (v1 rem gcd(v1;v2))) \mleq{} v1 BY
Auto)
THEN Decide \mkleeneopen{}2 \mleq{} gcd(v1;v2)\mkleeneclose{}\mcdot{}
THEN Auto)xxx
Home
Index