Nuprl Lemma : sbdecode_wf_gcd
∀[L:ℕ2 List]. (sbdecode(L) ∈ {p:ℕ+ × ℕ+| let m,n = p in gcd(m;n) = 1 ∈ ℤ} )
Proof
Definitions occuring in Statement : 
sbdecode: sbdecode(L)
, 
list: T List
, 
gcd: gcd(a;b)
, 
int_seg: {i..j-}
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
spread: spread def, 
product: x:A × B[x]
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
nat_plus: ℕ+
, 
uimplies: b supposing a
, 
int_seg: {i..j-}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
guard: {T}
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
subtype_rel: A ⊆r B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
less_than: a < b
, 
squash: ↓T
, 
le: A ≤ B
, 
nat: ℕ
, 
less_than': less_than'(a;b)
, 
ge: i ≥ j 
Lemmas referenced : 
sbdecode_wf, 
nat_plus_wf, 
sbcode_wf, 
sbcode-decode, 
equal_wf, 
equal-wf-T-base, 
gcd_wf, 
list_wf, 
int_seg_wf, 
subtype_base_sq, 
list_subtype_base, 
set_subtype_base, 
lelt_wf, 
int_subtype_base, 
sbdecode-code, 
gcd-positive, 
nat_plus_subtype_nat, 
nat_plus_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
div_rem_sum, 
equal-wf-base, 
nequal_wf, 
less_than_wf, 
rem_bounds_1, 
itermAdd_wf, 
itermMultiply_wf, 
int_term_value_add_lemma, 
int_term_value_mul_lemma, 
decidable__equal_int, 
false_wf, 
le_wf, 
le_functionality, 
add_functionality_wrt_le, 
multiply_functionality_wrt_le, 
le_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
dependent_set_memberEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
productEquality, 
lambdaFormation, 
productElimination, 
applyLambdaEquality, 
sqequalRule, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
spreadEquality, 
independent_pairEquality, 
intEquality, 
setElimination, 
rename, 
baseClosed, 
axiomEquality, 
natural_numberEquality, 
instantiate, 
cumulativity, 
independent_isectElimination, 
lambdaEquality, 
applyEquality, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
baseApply, 
closedConclusion, 
imageElimination, 
addEquality, 
multiplyEquality
Latex:
\mforall{}[L:\mBbbN{}2  List].  (sbdecode(L)  \mmember{}  \{p:\mBbbN{}\msupplus{}  \mtimes{}  \mBbbN{}\msupplus{}|  let  m,n  =  p  in  gcd(m;n)  =  1\}  )
Date html generated:
2018_05_21-PM-11_40_29
Last ObjectModification:
2017_07_26-PM-06_42_50
Theory : rationals
Home
Index