Nuprl Lemma : sbdecode_wf_gcd

[L:ℕList]. (sbdecode(L) ∈ {p:ℕ+ × ℕ+let m,n in gcd(m;n) 1 ∈ ℤ)


Proof




Definitions occuring in Statement :  sbdecode: sbdecode(L) list: List gcd: gcd(a;b) int_seg: {i..j-} nat_plus: + uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  spread: spread def product: x:A × B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q prop: nat_plus: + uimplies: supposing a int_seg: {i..j-} so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) guard: {T} pi2: snd(t) pi1: fst(t) subtype_rel: A ⊆B decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top and: P ∧ Q int_nzero: -o nequal: a ≠ b ∈  less_than: a < b squash: T le: A ≤ B nat: less_than': less_than'(a;b) ge: i ≥ 
Lemmas referenced :  sbdecode_wf nat_plus_wf sbcode_wf sbcode-decode equal_wf equal-wf-T-base gcd_wf list_wf int_seg_wf subtype_base_sq list_subtype_base set_subtype_base lelt_wf int_subtype_base sbdecode-code gcd-positive nat_plus_subtype_nat nat_plus_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf decidable__le intformle_wf int_formula_prop_le_lemma div_rem_sum equal-wf-base nequal_wf less_than_wf rem_bounds_1 itermAdd_wf itermMultiply_wf int_term_value_add_lemma int_term_value_mul_lemma decidable__equal_int false_wf le_wf le_functionality add_functionality_wrt_le multiply_functionality_wrt_le le_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut dependent_set_memberEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis because_Cache productEquality lambdaFormation productElimination applyLambdaEquality sqequalRule equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination spreadEquality independent_pairEquality intEquality setElimination rename baseClosed axiomEquality natural_numberEquality instantiate cumulativity independent_isectElimination lambdaEquality applyEquality unionElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll baseApply closedConclusion imageElimination addEquality multiplyEquality

Latex:
\mforall{}[L:\mBbbN{}2  List].  (sbdecode(L)  \mmember{}  \{p:\mBbbN{}\msupplus{}  \mtimes{}  \mBbbN{}\msupplus{}|  let  m,n  =  p  in  gcd(m;n)  =  1\}  )



Date html generated: 2018_05_21-PM-11_40_29
Last ObjectModification: 2017_07_26-PM-06_42_50

Theory : rationals


Home Index