Nuprl Lemma : sq_stable_qle
∀[r,s:ℚ].  SqStable(r ≤ s)
Proof
Definitions occuring in Statement : 
qle: r ≤ s, 
rationals: ℚ, 
sq_stable: SqStable(P), 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
qle: r ≤ s, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
ocgrp: OGrp, 
ocmon: OCMon, 
abmonoid: AbMon, 
mon: Mon, 
qadd_grp: <ℚ+>, 
grp_car: |g|, 
pi1: fst(t), 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
grp_leq: a ≤ b, 
infix_ap: x f y, 
prop: ℙ
Lemmas referenced : 
sq_stable__grp_leq, 
qadd_grp_wf2, 
ocgrp_wf, 
assert_witness, 
grp_le_wf, 
squash_wf, 
grp_leq_wf, 
rationals_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
hypothesisEquality, 
dependent_functionElimination, 
because_Cache, 
independent_functionElimination, 
isect_memberEquality
Latex:
\mforall{}[r,s:\mBbbQ{}].    SqStable(r  \mleq{}  s)
Date html generated:
2016_05_15-PM-10_45_28
Last ObjectModification:
2015_12_27-PM-07_53_30
Theory : rationals
Home
Index