Nuprl Lemma : sum_of_geometric_prog_q
∀[a:ℚ]. ∀[n:ℕ].  (((1 + -(a)) * Σ0 ≤ i < n. a ↑ i) = (1 + -(a ↑ n)) ∈ ℚ)
Proof
Definitions occuring in Statement : 
qexp: r ↑ n, 
qsum: Σa ≤ j < b. E[j], 
qmul: r * s, 
qadd: r + s, 
rationals: ℚ, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
minus: -n, 
natural_number: $n, 
equal: s = t ∈ T
Definitions unfolded in proof : 
q-rng-nexp: q-rng-nexp(r;n), 
qsum: Σa ≤ j < b. E[j], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
qrng: <ℚ+*>, 
rng_car: |r|, 
pi1: fst(t), 
rng_times: *, 
pi2: snd(t), 
rng_plus: +r, 
rng_one: 1, 
rng_minus: -r, 
infix_ap: x f y, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
guard: {T}, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
squash: ↓T, 
true: True, 
prop: ℙ, 
implies: P ⇒ Q, 
not: ¬A, 
false: False, 
less_than': less_than'(a;b), 
and: P ∧ Q, 
le: A ≤ B, 
uimplies: b supposing a, 
nat: ℕ, 
subtype_rel: A ⊆r B
Lemmas referenced : 
sum_of_geometric_prog, 
qrng_wf, 
iff_weakening_equal, 
qexp-eq-q-rng-nexp, 
qsum_wf, 
true_wf, 
squash_wf, 
equal_wf, 
int_seg_wf, 
false_wf, 
int_seg_subtype_nat, 
qmul_wf, 
int-subtype-rationals, 
qadd_wf, 
rationals_wf, 
nat_wf
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
independent_functionElimination, 
productElimination, 
baseClosed, 
imageMemberEquality, 
intEquality, 
functionEquality, 
universeEquality, 
equalitySymmetry, 
equalityTransitivity, 
imageElimination, 
lambdaEquality, 
lambdaFormation, 
independent_pairFormation, 
independent_isectElimination, 
rename, 
setElimination, 
minusEquality, 
applyEquality, 
natural_numberEquality, 
because_Cache, 
hypothesisEquality, 
isect_memberFormation
Latex:
\mforall{}[a:\mBbbQ{}].  \mforall{}[n:\mBbbN{}].    (((1  +  -(a))  *  \mSigma{}0  \mleq{}  i  <  n.  a  \muparrow{}  i)  =  (1  +  -(a  \muparrow{}  n)))
Date html generated:
2020_05_20-AM-09_25_57
Last ObjectModification:
2020_02_03-PM-02_28_16
Theory : rationals
Home
Index