Nuprl Lemma : sum_of_geometric_prog
∀[r:CRng]. ∀[a:|r|]. ∀[n:ℕ].  (((1 +r (-r a)) * (Σ(r) 0 ≤ i < n. a ↑r i)) = (1 +r (-r (a ↑r n))) ∈ |r|)
This theorem is one of freek's list of 100 theorems
Proof
Definitions occuring in Statement : 
rng_nexp: e ↑r n
, 
rng_sum: rng_sum, 
crng: CRng
, 
rng_one: 1
, 
rng_times: *
, 
rng_minus: -r
, 
rng_plus: +r
, 
rng_car: |r|
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
apply: f a
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
crng: CRng
, 
rng: Rng
, 
squash: ↓T
, 
infix_ap: x f y
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
so_apply: x[s]
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
nat_plus: ℕ+
Lemmas referenced : 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
nat_wf, 
rng_car_wf, 
crng_wf, 
equal_wf, 
squash_wf, 
true_wf, 
rng_times_wf, 
infix_ap_wf, 
rng_plus_wf, 
rng_one_wf, 
rng_minus_wf, 
rng_sum_unroll_base, 
rng_nexp_wf, 
int_seg_subtype_nat, 
false_wf, 
int_seg_wf, 
rng_nexp_zero, 
iff_weakening_equal, 
rng_times_over_plus, 
rng_zero_wf, 
rng_times_over_minus, 
rng_times_zero, 
rng_minus_zero, 
rng_plus_inv, 
rng_plus_zero, 
rng_sum_unroll_hi, 
le_wf, 
rng_sum_wf, 
rng_nexp_unroll, 
rng_times_one, 
crng_times_comm, 
rng_plus_assoc, 
rng_plus_ac_1, 
rng_plus_comm, 
rng_plus_inv_assoc
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
axiomEquality, 
unionElimination, 
because_Cache, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
dependent_set_memberEquality
Latex:
\mforall{}[r:CRng].  \mforall{}[a:|r|].  \mforall{}[n:\mBbbN{}].    (((1  +r  (-r  a))  *  (\mSigma{}(r)  0  \mleq{}  i  <  n.  a  \muparrow{}r  i))  =  (1  +r  (-r  (a  \muparrow{}r  n))))
Date html generated:
2017_10_01-AM-08_19_40
Last ObjectModification:
2017_02_28-PM-02_04_21
Theory : rings_1
Home
Index