Nuprl Lemma : presheaf-subset_wf1
∀[C:SmallCategory]. ∀[F:presheaf{j:l}(C)]. ∀[P:I:cat-ob(C) ⟶ (F I) ⟶ ℙ{j}].
  F|I,rho.P[I;rho] ∈ presheaf{j:l}(C) supposing stable-element-predicate(C;F;I,rho.P[I;rho])
Proof
Definitions occuring in Statement : 
presheaf-subset: F|I,rho.P[I; rho]
, 
stable-element-predicate: stable-element-predicate(C;F;I,rho.P[I; rho])
, 
presheaf: Presheaf(C)
, 
functor-ob: ob(F)
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
presheaf-subset: F|I,rho.P[I; rho]
, 
so_apply: x[s1;s2]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
presheaf: Presheaf(C)
, 
all: ∀x:A. B[x]
, 
cat-ob: cat-ob(C)
, 
pi1: fst(t)
, 
type-cat: TypeCat
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_lambda: so_lambda4, 
so_apply: x[s1;s2;s3;s4]
, 
stable-element-predicate: stable-element-predicate(C;F;I,rho.P[I; rho])
, 
implies: P 
⇒ Q
, 
compose: f o g
Lemmas referenced : 
presheaf_wf1, 
stable-element-predicate_wf1, 
cat-ob_wf, 
functor-ob_wf, 
op-cat_wf, 
small-category-cumulativity-2, 
type-cat_wf, 
subtype_rel-equal, 
cat_ob_op_lemma, 
subtype_rel_self, 
small-category_wf, 
functor-arrow_wf, 
cat-arrow_wf, 
op-cat-arrow, 
mk-presheaf_wf1, 
functor-arrow-id, 
op-cat-id, 
cat_arrow_triple_lemma, 
cat_id_tuple_lemma, 
cat-comp_wf, 
functor-arrow-comp, 
op-cat-comp, 
cat_comp_tuple_lemma
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
functionIsType, 
applyEquality, 
instantiate, 
because_Cache, 
independent_isectElimination, 
dependent_functionElimination, 
universeEquality, 
setEquality, 
setElimination, 
rename, 
dependent_set_memberEquality_alt, 
Error :memTop, 
setIsType, 
lambdaFormation_alt, 
lambdaEquality_alt, 
independent_functionElimination, 
applyLambdaEquality
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[F:presheaf\{j:l\}(C)].  \mforall{}[P:I:cat-ob(C)  {}\mrightarrow{}  (F  I)  {}\mrightarrow{}  \mBbbP{}\{j\}].
    F|I,rho.P[I;rho]  \mmember{}  presheaf\{j:l\}(C)  supposing  stable-element-predicate(C;F;I,rho.P[I;rho])
Date html generated:
2020_05_20-AM-07_57_29
Last ObjectModification:
2020_04_03-AM-11_39_56
Theory : small!categories
Home
Index