Nuprl Lemma : presheaf-subset_wf1
∀[C:SmallCategory]. ∀[F:presheaf{j:l}(C)]. ∀[P:I:cat-ob(C) ⟶ (F I) ⟶ ℙ{j}].
F|I,rho.P[I;rho] ∈ presheaf{j:l}(C) supposing stable-element-predicate(C;F;I,rho.P[I;rho])
Proof
Definitions occuring in Statement :
presheaf-subset: F|I,rho.P[I; rho]
,
stable-element-predicate: stable-element-predicate(C;F;I,rho.P[I; rho])
,
presheaf: Presheaf(C)
,
functor-ob: ob(F)
,
cat-ob: cat-ob(C)
,
small-category: SmallCategory
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
so_apply: x[s1;s2]
,
member: t ∈ T
,
apply: f a
,
function: x:A ⟶ B[x]
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
presheaf-subset: F|I,rho.P[I; rho]
,
so_apply: x[s1;s2]
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
presheaf: Presheaf(C)
,
all: ∀x:A. B[x]
,
cat-ob: cat-ob(C)
,
pi1: fst(t)
,
type-cat: TypeCat
,
guard: {T}
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
so_lambda: so_lambda4,
so_apply: x[s1;s2;s3;s4]
,
stable-element-predicate: stable-element-predicate(C;F;I,rho.P[I; rho])
,
implies: P
⇒ Q
,
compose: f o g
Lemmas referenced :
presheaf_wf1,
stable-element-predicate_wf1,
cat-ob_wf,
functor-ob_wf,
op-cat_wf,
small-category-cumulativity-2,
type-cat_wf,
subtype_rel-equal,
cat_ob_op_lemma,
subtype_rel_self,
small-category_wf,
functor-arrow_wf,
cat-arrow_wf,
op-cat-arrow,
mk-presheaf_wf1,
functor-arrow-id,
op-cat-id,
cat_arrow_triple_lemma,
cat_id_tuple_lemma,
cat-comp_wf,
functor-arrow-comp,
op-cat-comp,
cat_comp_tuple_lemma
Rules used in proof :
cut,
introduction,
extract_by_obid,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
hypothesis,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
sqequalRule,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
universeIsType,
functionIsType,
applyEquality,
instantiate,
because_Cache,
independent_isectElimination,
dependent_functionElimination,
universeEquality,
setEquality,
setElimination,
rename,
dependent_set_memberEquality_alt,
Error :memTop,
setIsType,
lambdaFormation_alt,
lambdaEquality_alt,
independent_functionElimination,
applyLambdaEquality
Latex:
\mforall{}[C:SmallCategory]. \mforall{}[F:presheaf\{j:l\}(C)]. \mforall{}[P:I:cat-ob(C) {}\mrightarrow{} (F I) {}\mrightarrow{} \mBbbP{}\{j\}].
F|I,rho.P[I;rho] \mmember{} presheaf\{j:l\}(C) supposing stable-element-predicate(C;F;I,rho.P[I;rho])
Date html generated:
2020_05_20-AM-07_57_29
Last ObjectModification:
2020_04_03-AM-11_39_56
Theory : small!categories
Home
Index