Step
*
of Lemma
presheaf-subset_wf1
No Annotations
∀[C:SmallCategory]. ∀[F:presheaf{j:l}(C)]. ∀[P:I:cat-ob(C) ⟶ (F I) ⟶ ℙ{j}].
F|I,rho.P[I;rho] ∈ presheaf{j:l}(C) supposing stable-element-predicate(C;F;I,rho.P[I;rho])
BY
{ ((InstLemma `presheaf_wf1` [] THEN ParallelLast')
THEN (InstLemma `stable-element-predicate_wf1` [⌜C⌝]⋅ THENA Auto)
THEN RepeatFor 2 (ParallelLast')
THEN (D 0 THENA Auto)
THEN Thin (-2)
THEN Unfold `presheaf-subset` 0
THEN (MemCD THENA Auto)
THEN ((D 0 THENA Auto) ORELSE Auto)
THEN Intros
THEN Thin 2) }
1
1. C : SmallCategory
2. F : presheaf{j:l}(C)
3. P : I:cat-ob(C) ⟶ (F I) ⟶ ℙ{j}
4. stable-element-predicate(C;F;I,rho.P[I;rho])
5. I : cat-ob(C)
6. rho : {rho:F I| P[I;rho]}
⊢ (F I I (cat-id(C) I) rho) = rho ∈ {rho:F I| P[I;rho]}
2
1. C : SmallCategory
2. F : presheaf{j:l}(C)
3. P : I:cat-ob(C) ⟶ (F I) ⟶ ℙ{j}
4. stable-element-predicate(C;F;I,rho.P[I;rho])
5. I : cat-ob(C)
6. J : cat-ob(C)
7. K : cat-ob(C)
8. f : cat-arrow(C) J I
9. g : cat-arrow(C) K J
10. rho : {rho:F I| P[I;rho]}
⊢ (F I K (cat-comp(C) K J I g f) rho) = (F J K g (F I J f rho)) ∈ {rho:F K| P[K;rho]}
Latex:
Latex:
No Annotations
\mforall{}[C:SmallCategory]. \mforall{}[F:presheaf\{j:l\}(C)]. \mforall{}[P:I:cat-ob(C) {}\mrightarrow{} (F I) {}\mrightarrow{} \mBbbP{}\{j\}].
F|I,rho.P[I;rho] \mmember{} presheaf\{j:l\}(C) supposing stable-element-predicate(C;F;I,rho.P[I;rho])
By
Latex:
((InstLemma `presheaf\_wf1` [] THEN ParallelLast')
THEN (InstLemma `stable-element-predicate\_wf1` [\mkleeneopen{}C\mkleeneclose{}]\mcdot{} THENA Auto)
THEN RepeatFor 2 (ParallelLast')
THEN (D 0 THENA Auto)
THEN Thin (-2)
THEN Unfold `presheaf-subset` 0
THEN (MemCD THENA Auto)
THEN ((D 0 THENA Auto) ORELSE Auto)
THEN Intros
THEN Thin 2)
Home
Index