Nuprl Lemma : lifting-isaxiom-concat

[a,b,c:Top].  (concat(if Ax then otherwise c) if Ax then concat(b) otherwise concat(c))


Proof




Definitions occuring in Statement :  concat: concat(ll) uall: [x:A]. B[x] top: Top isaxiom: if Ax then otherwise b sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top guard: {T} so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] uimplies: supposing a
Lemmas referenced :  lifting-strict-isaxiom strict4-concat top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis sqequalAxiom lemma_by_obid sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality because_Cache baseClosed voidElimination voidEquality independent_isectElimination

Latex:
\mforall{}[a,b,c:Top].    (concat(if  a  =  Ax  then  b  otherwise  c)  \msim{}  if  a  =  Ax  then  concat(b)  otherwise  concat(c))



Date html generated: 2016_05_15-PM-02_07_23
Last ObjectModification: 2016_01_15-PM-10_24_02

Theory : untyped!computation


Home Index