Nuprl Lemma : lifting-isaxiom-concat
∀[a,b,c:Top].  (concat(if a = Ax then b otherwise c) ~ if a = Ax then concat(b) otherwise concat(c))
Proof
Definitions occuring in Statement : 
concat: concat(ll)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
isaxiom: if z = Ax then a otherwise b
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
top: Top
, 
guard: {T}
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
so_apply: x[s1;s2;s3;s4]
, 
uimplies: b supposing a
Lemmas referenced : 
lifting-strict-isaxiom, 
strict4-concat, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
sqequalAxiom, 
lemma_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
baseClosed, 
voidElimination, 
voidEquality, 
independent_isectElimination
Latex:
\mforall{}[a,b,c:Top].    (concat(if  a  =  Ax  then  b  otherwise  c)  \msim{}  if  a  =  Ax  then  concat(b)  otherwise  concat(c))
Date html generated:
2016_05_15-PM-02_07_23
Last ObjectModification:
2016_01_15-PM-10_24_02
Theory : untyped!computation
Home
Index