Nuprl Lemma : lifting-null-spread
∀[p,F:Top].  (null(let x,y = p in F[x;y]) ~ let x,y = p in null(F[x;y]))
Proof
Definitions occuring in Statement : 
null: null(as), 
uall: ∀[x:A]. B[x], 
top: Top, 
so_apply: x[s1;s2], 
spread: spread def, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
top: Top, 
strict4: strict4(F), 
and: P ∧ Q, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
null: null(as), 
has-value: (a)↓, 
prop: ℙ, 
guard: {T}, 
or: P ∨ Q, 
squash: ↓T, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]), 
so_apply: x[s1;s2;s3;s4], 
uimplies: b supposing a
Lemmas referenced : 
lifting-strict-spread, 
is-exception_wf, 
base_wf, 
has-value_wf_base, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
sqequalAxiom, 
lemma_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
baseClosed, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
lambdaFormation, 
callbyvalueIspair, 
baseApply, 
closedConclusion, 
ispairExceptionCases, 
inrFormation, 
imageMemberEquality, 
imageElimination, 
exceptionSqequal, 
inlFormation, 
independent_isectElimination
Latex:
\mforall{}[p,F:Top].    (null(let  x,y  =  p  in  F[x;y])  \msim{}  let  x,y  =  p  in  null(F[x;y]))
Date html generated:
2016_05_15-PM-02_07_19
Last ObjectModification:
2016_01_15-PM-10_24_05
Theory : untyped!computation
Home
Index