Nuprl Lemma : lifting-null-spread

[p,F:Top].  (null(let x,y in F[x;y]) let x,y in null(F[x;y]))


Proof




Definitions occuring in Statement :  null: null(as) uall: [x:A]. B[x] top: Top so_apply: x[s1;s2] spread: spread def sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top strict4: strict4(F) and: P ∧ Q all: x:A. B[x] implies:  Q null: null(as) has-value: (a)↓ prop: guard: {T} or: P ∨ Q squash: T so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] uimplies: supposing a
Lemmas referenced :  lifting-strict-spread is-exception_wf base_wf has-value_wf_base top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis sqequalAxiom lemma_by_obid sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality because_Cache baseClosed voidElimination voidEquality independent_pairFormation lambdaFormation callbyvalueIspair baseApply closedConclusion ispairExceptionCases inrFormation imageMemberEquality imageElimination exceptionSqequal inlFormation independent_isectElimination

Latex:
\mforall{}[p,F:Top].    (null(let  x,y  =  p  in  F[x;y])  \msim{}  let  x,y  =  p  in  null(F[x;y]))



Date html generated: 2016_05_15-PM-02_07_19
Last ObjectModification: 2016_01_15-PM-10_24_05

Theory : untyped!computation


Home Index