Nuprl Lemma : map-simple-reduce
∀[f,d,c,as:Top].
  (map(f;reduce(λx,a. case d[x] of inl(u) => a | inr(v) => [c[x] / a];[];as)) ~ reduce(λx,a. case d[x]
                                                                                         of inl(u) =>
                                                                                         a
                                                                                         | inr(v) =>
                                                                                         [f c[x] / a];[];as))
Proof
Definitions occuring in Statement : 
map: map(f;as), 
reduce: reduce(f;k;as), 
cons: [a / b], 
nil: [], 
uall: ∀[x:A]. B[x], 
top: Top, 
so_apply: x[s], 
apply: f a, 
lambda: λx.A[x], 
decide: case b of inl(x) => s[x] | inr(y) => t[y], 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
reduce: reduce(f;k;as), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uimplies: b supposing a, 
strict1: strict1(F), 
and: P ∧ Q, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
map: map(f;as), 
list_ind: list_ind, 
has-value: (a)↓, 
prop: ℙ, 
or: P ∨ Q, 
squash: ↓T, 
guard: {T}, 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
so_apply: x[s1;s2;s3], 
ifthenelse: if b then t else f fi , 
top: Top
Lemmas referenced : 
top_wf, 
map_nil_lemma, 
sqle_wf_base, 
map_cons_lemma, 
map-ifthenelse, 
is-exception_wf, 
base_wf, 
has-value_wf_base, 
sqequal-list_ind
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
thin, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation, 
callbyvalueCallbyvalue, 
hypothesis, 
callbyvalueReduce, 
callbyvalueExceptionCases, 
inlFormation, 
imageMemberEquality, 
imageElimination, 
exceptionSqequal, 
inrFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
dependent_functionElimination, 
divergentSqle, 
sqleRule, 
sqleReflexivity, 
because_Cache, 
sqequalAxiom
Latex:
\mforall{}[f,d,c,as:Top].
    (map(f;reduce(\mlambda{}x,a.  case  d[x]  of  inl(u)  =>  a  |  inr(v)  =>  [c[x]  /  a];[];as)) 
    \msim{}  reduce(\mlambda{}x,a.  case  d[x]  of  inl(u)  =>  a  |  inr(v)  =>  [f  c[x]  /  a];[];as))
Date html generated:
2016_05_15-PM-02_07_37
Last ObjectModification:
2016_01_15-PM-10_24_08
Theory : untyped!computation
Home
Index