Nuprl Lemma : spread-append
∀[x,F,L:Top].  (let a,b = x in F[a;b] @ L ~ let a,b = x in F[a;b] @ L)
Proof
Definitions occuring in Statement : 
append: as @ bs
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s1;s2]
, 
spread: spread def, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_apply: x[s1;s2]
, 
append: as @ bs
, 
cons: [a / b]
, 
list_ind: list_ind, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
so_apply: x[s1;s2;s3;s4]
, 
so_lambda: λ2x.t[x]
, 
top: Top
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
strict4: strict4(F)
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
has-value: (a)↓
, 
prop: ℙ
, 
guard: {T}
, 
or: P ∨ Q
, 
squash: ↓T
, 
so_lambda: λ2x y.t[x; y]
Lemmas referenced : 
top_wf, 
is-exception_wf, 
base_wf, 
has-value_wf_base, 
lifting-strict-spread
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
baseClosed, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation, 
callbyvalueCallbyvalue, 
hypothesis, 
callbyvalueReduce, 
baseApply, 
closedConclusion, 
hypothesisEquality, 
callbyvalueExceptionCases, 
inrFormation, 
imageMemberEquality, 
imageElimination, 
exceptionSqequal, 
inlFormation, 
sqequalAxiom, 
because_Cache
Latex:
\mforall{}[x,F,L:Top].    (let  a,b  =  x  in  F[a;b]  @  L  \msim{}  let  a,b  =  x  in  F[a;b]  @  L)
Date html generated:
2016_05_15-PM-02_07_48
Last ObjectModification:
2016_01_15-PM-10_22_08
Theory : untyped!computation
Home
Index