WhoCites Definitions EventSystems Sections NuprlLIB Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Who Cites ring?
ringDef ring(R;in;out)
Def == (i:|R|. 
Def == ((R(source(in(i)))) & (R(destination(out(i))))
Def == (& source(out(i)) = i
Def == (& & destination(in(i)) = i
Def == (& in(destination(out(i))) = out(i IdLnk
Def == (& out(source(in(i))) = in(i IdLnk)
Def == & (i,j:|R|. k:x.destination(out(x))^k(i) = j  Id)
Def == & |R|
Thm* R:(Id), in,out:(|R|IdLnk). ring(R;in;out Prop
rsetDef |R| == {i:Id| (R(i)) }
Thm* R:(Id). |R Type
ldstDef destination(l) == 1of(2of(l))
Thm* l:IdLnk. destination(l Id
fun_expDef f^n == primrec(n;x.x;i,gf o g)
Thm* T:Type, n:f:(TT). f^n  TT
IdLnkDef IdLnk == IdId
Thm* IdLnk  Type
IdDef Id == Atom
Thm* Id  Type
nat_plusDef  == {i:| 0<i }
Thm*   Type
lsrcDef source(l) == 1of(l)
Thm* l:IdLnk. source(l Id
assertDef b == if b True else False fi
Thm* b:b  Prop
pi2Def 2of(t) == t.2
Thm* A:Type, B:(AType), p:(a:AB(a)). 2of(p B(1of(p))
pi1Def 1of(t) == t.1
Thm* A:Type, B:(AType), p:(a:AB(a)). 1of(p A
composeDef (f o g)(x) == f(g(x))
Thm* A,B,C:Type, f:(BC), g:(AB). f o g  AC
primrecDef primrec(n;b;c) == if n=0 b else c(n-1,primrec(n-1;b;c)) fi  (recursive)
Thm* T:Type, n:b:Tc:(nTT). primrec(n;b;c T
natDef  == {i:| 0i }
Thm*   Type
eq_intDef i=j == if i=j true ; false fi
Thm* i,j:. (i=j 
leDef AB == B<A
Thm* i,j:. (ij Prop
notDef A == A  False
Thm* A:Prop. (A Prop

Syntax:ring(R;in;out) has structure: ring(Rinout)

About:
spreadspreadproductproductboolbfalsebtrueifthenelseassertint
natural_numbersubtractint_eqless_thanatomset
lambdaapplyfunctionrecursive_def_noticeuniverseequalmember
propimpliesandfalsetrueallexists
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

WhoCites Definitions EventSystems Sections NuprlLIB Doc