is mentioned by
Thm* 2 n < k+1 Thm* Thm* (i:{2..k}. ni 0<g(i) prime(i)) Thm* Thm* (h:({2..k}). Thm* ({2..k}(g) = {2..k}(h) & is_prime_factorization(2; k; h)) | [prime_factorization_existsLEMMA] |
[eval_factorization_nullnorm] | |
[eval_factorization_intseg_null] | |
Thm* 2j 0<f(j) {a..b}(reduce_factorization(f; j))<{a..b}(f) | [eval_reduce_factorization_less] |
Thm* 0<f(j) (i:{a..b}. reduce_factorization(f; j)(i)f(i)) | [reduce_factorization_bound] |
Thm* ac c<b {a..b}(f) = {a..c}(f)cf(c){c+1..b}(f) | [eval_factorization_split_pluck] |
Thm* ac cb {a..b}(f) = {a..c}(f){c..b}(f) | [eval_factorization_split_mid] |
Thm* P(n-1) (i:{a..b}. ni P(i)) (i:{a..b}. n-1i P(i)) | [extend_intseg_upperpart_down] |
In prior sections: int 1 bool 1 int 2 num thy 1 SimpleMulFacts IteratedBinops core
Try larger context:
DiscrMathExt
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html