FTA Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Def  AB == B<A

is mentioned by

Thm*  k:{2...}, n:g:({2..k}).
Thm*   n < k+1
Thm*  
Thm*  (i:{2..k}. ni  0<g(i prime(i))
Thm*  
Thm*  (h:({2..k}). 
Thm*  ({2..k}(g) = {2..k}(h) & is_prime_factorization(2; kh))
[prime_factorization_existsLEMMA]
Thm*  a,b:f:({a..b}). ba  {a..b}(f) = {a..a}(f)[eval_factorization_nullnorm]
Thm*  a,b:f:({a..b}). ba  {a..b}(f) = 1[eval_factorization_intseg_null]
Thm*  a:b:f:({a..b}), j:{a..b}.
Thm*  2j  0<f(j {a..b}(reduce_factorization(fj))<{a..b}(f)
[eval_reduce_factorization_less]
Thm*  a,b:f:({a..b}), j:{a..b}.
Thm*  0<f(j (i:{a..b}. reduce_factorization(fj)(i)f(i))
[reduce_factorization_bound]
Thm*  a,c,b:f:({a..b}).
Thm*  ac  c<b  {a..b}(f) = {a..c}(f)cf(c){c+1..b}(f)
[eval_factorization_split_pluck]
Thm*  a,c,b:f:({a..b}).
Thm*  ac  cb  {a..b}(f) = {a..c}(f){c..b}(f)
[eval_factorization_split_mid]
Thm*  a,b:P:({a..b}Prop), n:{(a+1)..(b+1)}.
Thm*  P(n-1)  (i:{a..b}. ni  P(i))  (i:{a..b}. n-1i  P(i))
[extend_intseg_upperpart_down]

In prior sections: int 1 bool 1 int 2 num thy 1 SimpleMulFacts IteratedBinops core

Try larger context: DiscrMathExt IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

FTA Sections DiscrMathExt Doc