FTA Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Def  Prime == {x:| prime(x) }

is mentioned by

Thm*  n:{1...}. !f:(Prime). f is a factorization of n[fta_mset]
Thm*  n:f,g:(Prime).
Thm*  f is a factorization of n  g is a factorization of n  f = g
[prime_factorization_mset_unique]
Thm*  n:{1...}. f:(Prime). f is a factorization of n[prime_factorization_exists2]
Thm*  f:(Prime), b:. is_prime_factorization(2; b; prime_mset_complete(f))[prime_mset_c_is_prime_f]
Thm*  f:(Prime), n,n':.
Thm*  f is a factorization of n  f is a factorization of n'  n = n'
[only_one_factored_by]
Thm*  f:(Prime), n:f is a factorization of n  0<n[only_positives_prime_fed]
Thm*  n:f,g:(Prime).
Thm*  f is a factorization of n
Thm*  
Thm*  g is a factorization of n
Thm*  
Thm*  (x:{2..(n+1)}. prime_mset_complete(f)(x) = prime_mset_complete(g)(x))
Thm*  
Thm*  f = g
[prime_factorization_limit]
Thm*  f:(Prime), k:f is a factorization of k  Prop[prime_factorization_of_wf]
Thm*  f:(Prime), x:prime(x prime_mset_complete(f)(x) = 0[prime_mset_complete_ismin]
Thm*  f:(Prime), x:Prime. prime_mset_complete(f)(x) = f(x)[prime_mset_complete_isext]
Thm*  f:(Prime). prime_mset_complete(f [prime_mset_complete_wf]
Def  f is a factorization of k
Def  == (x:Primek<x  f(x) = 0) & k = {2..k+1}(prime_mset_complete(f))
[prime_factorization_of]

Try larger context: DiscrMathExt IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

FTA Sections DiscrMathExt Doc