FTA Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Def  reduce_factorization(fj)(i) == if i=j f(i)-1 else f(i) fi

is mentioned by

Thm*  a:b:f:({a..b}), p:.
Thm*  is_prime_factorization(abf)
Thm*  
Thm*  prime(p)
Thm*  
Thm*  p | {a..b}(f {a..b}(f) = p{a..b}(reduce_factorization(fp))
[remove_prime_factor]
Thm*  a,b:f:({a..b}), j:{a..b}.
Thm*  0<f(j)
Thm*  
Thm*  is_prime_factorization(abf)
Thm*  
Thm*  is_prime_factorization(ab; reduce_factorization(fj))
[reduce_fac_pres_isprimefac]
Thm*  a:b:f:({a..b}), j:{a..b}.
Thm*  2j  0<f(j {a..b}(reduce_factorization(fj))<{a..b}(f)
[eval_reduce_factorization_less]
Thm*  a,b:f:({a..b}), z:{a..b}.
Thm*  0<f(z {a..b}(f) = z{a..b}(reduce_factorization(fz))
[eval_factorization_pluck]
Thm*  a,b:f:({a..b}), j:{a..b}.
Thm*  0<f(j (i:{a..b}. reduce_factorization(fj)(i)f(i))
[reduce_factorization_bound]
Thm*  a,b:f,g:({a..b}), j:{a..b}.
Thm*  0<f(j)
Thm*  
Thm*  0<g(j reduce_factorization(fj) = reduce_factorization(gj f = g
[reduce_factorization_cancel]

Try larger context: DiscrMathExt IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

FTA Sections DiscrMathExt Doc