is mentioned by
Thm* is_prime_factorization(a; b; f) Thm* Thm* prime(p) Thm* Thm* p | {a..b}(f) {a..b}(f) = p{a..b}(reduce_factorization(f; p)) | [remove_prime_factor] |
Thm* 0<f(j) Thm* Thm* is_prime_factorization(a; b; f) Thm* Thm* is_prime_factorization(a; b; reduce_factorization(f; j)) | [reduce_fac_pres_isprimefac] |
Thm* 2j 0<f(j) {a..b}(reduce_factorization(f; j))<{a..b}(f) | [eval_reduce_factorization_less] |
Thm* 0<f(z) {a..b}(f) = z{a..b}(reduce_factorization(f; z)) | [eval_factorization_pluck] |
Thm* 0<f(j) (i:{a..b}. reduce_factorization(f; j)(i)f(i)) | [reduce_factorization_bound] |
Thm* 0<f(j) Thm* Thm* 0<g(j) reduce_factorization(f; j) = reduce_factorization(g; j) f = g | [reduce_factorization_cancel] |
Try larger context:
DiscrMathExt
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html