| Some definitions of interest. |
|
eval_factorization | Def {a..b}(f) == i:{a..b}. if(i) |
| | Thm* a,b:, f:({a..b}). {a..b}(f) |
|
is_prime_factorization | Def is_prime_factorization(a; b; f) == i:{a..b}. 0<f(i) prime(i) |
| | Thm* a,b:, f:({a..b}). is_prime_factorization(a; b; f) Prop |
|
int_seg | Def {i..j} == {k:| i k < j } |
| | Thm* m,n:. {m..n} Type |
|
int_upper | Def {i...} == {j:| ij } |
| | Thm* n:. {n...} Type |
|
lelt | Def i j < k == ij & j<k |
|
nat | Def == {i:| 0i } |
| | Thm* Type |
|
le | Def AB == B<A |
| | Thm* i,j:. (ij) Prop |
|
prime | Def prime(a) == a = 0 & (a ~ 1) & (b,c:. a | bc a | b a | c) |
| | Thm* a:. prime(a) Prop |
|
not | Def A == A False |
| | Thm* A:Prop. (A) Prop |