Definitions FTA Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
eval_factorizationDef  {a..b}(f) ==  i:{a..b}. if(i)
Thm*  a,b:f:({a..b}). {a..b}(f 
is_prime_factorizationDef  is_prime_factorization(abf) == i:{a..b}. 0<f(i prime(i)
Thm*  a,b:f:({a..b}). is_prime_factorization(abf Prop
int_segDef  {i..j} == {k:i  k < j }
Thm*  m,n:. {m..n Type
int_upperDef  {i...} == {j:ij }
Thm*  n:. {n...}  Type
leltDef  i  j < k == ij & j<k
natDef   == {i:| 0i }
Thm*    Type
leDef  AB == B<A
Thm*  i,j:. (ij Prop
primeDef  prime(a) == a = 0 & (a ~ 1) & (b,c:a | bc  a | b  a | c)
Thm*  a:. prime(a Prop
notDef  A == A  False
Thm*  A:Prop. (A Prop

About:
intnatural_numbermultiplyless_thansetlambdaapplyfunctionuniverse
equalmemberpropimpliesandorfalseall!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions FTA Sections DiscrMathExt Doc