| Some definitions of interest. |
|
exists_unique | Def !x:A. P(x) == x:A. x is the x:A. P(x) |
| | Thm* A:Type, P:(A Prop). ( !x:A. P(x)) Prop |
|
int_upper | Def {i...} == {j: | i j } |
| | Thm* n: . {n...} Type |
|
is_the | Def x is the u:A. P(u) == P(x) & ( u:A. P(u)  u = x) |
| | Thm* A:Type, P:(A Prop), x:A. (x is the x:A. P(x)) Prop |
|
prime_factorization_of | Def f is a factorization of k
Def == ( x:Prime . k<x  f(x) = 0) & k =  {2..k+1 }(prime_mset_complete(f)) |
| | Thm* f:(Prime   ), k: . f is a factorization of k Prop |
|
prime_nats | Def Prime == {x: | prime(x) } |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |