Definitions FTA Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
exists_uniqueDef  !x:AP(x) == x:A. x is the x:AP(x)
Thm*  A:Type, P:(AProp). (!x:AP(x))  Prop
int_upperDef  {i...} == {j:ij }
Thm*  n:. {n...}  Type
is_theDef  x is the u:AP(u) == P(x) & (u:AP(u u = x)
Thm*  A:Type, P:(AProp), x:A. (x is the x:AP(x))  Prop
prime_factorization_ofDef  f is a factorization of k
Def  == (x:Primek<x  f(x) = 0) & k = {2..k+1}(prime_mset_complete(f))
Thm*  f:(Prime), k:f is a factorization of k  Prop
prime_natsDef  Prime == {x:| prime(x) }
natDef   == {i:| 0i }
Thm*    Type

About:
intnatural_numberaddless_thansetapplyfunctionuniverseequal
memberpropimpliesandallexists!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions FTA Sections DiscrMathExt Doc