| Some definitions of interest. |
|
exists_unique | Def !x:A. P(x) == x:A. x is the x:A. P(x) |
| | Thm* A:Type, P:(AProp). (!x:A. P(x)) Prop |
|
int_upper | Def {i...} == {j:| ij } |
| | Thm* n:. {n...} Type |
|
is_the | Def x is the u:A. P(u) == P(x) & (u:A. P(u) u = x) |
| | Thm* A:Type, P:(AProp), x:A. (x is the x:A. P(x)) Prop |
|
prime_factorization_of | Def f is a factorization of k
Def == (x:Prime. k<x f(x) = 0) & k = {2..k+1}(prime_mset_complete(f)) |
| | Thm* f:(Prime), k:. f is a factorization of k Prop |
|
prime_nats | Def Prime == {x:| prime(x) } |
|
nat | Def == {i:| 0i } |
| | Thm* Type |