Rank | Theorem | Name |
14 | Thm* n:{1...}.
Thm* h:({2..(n+1) }  ).
Thm* n =  {2..n+1 }(h) & is_prime_factorization(2; (n+1); h) | [prime_factorization_exists] |
cites the following: |
5 | Thm* a,b: , j:{a..b }.  {a..b }(trivial_factorization(j)) = j | [eval_trivial_factorization] |
13 | Thm* k:{2...}, n: , g:({2..k }  ).
Thm* 2 n < k+1
Thm* 
Thm* ( i:{2..k }. n i  0<g(i)  prime(i))
Thm* 
Thm* ( h:({2..k }  ).
Thm* ( {2..k }(g) =  {2..k }(h) & is_prime_factorization(2; k; h)) | [prime_factorization_existsLEMMA] |