FTA Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
RankTheoremName
14Thm*  n:{1...}. 
Thm*  h:({2..(n+1)}). 
Thm*  n = {2..n+1}(h) & is_prime_factorization(2; (n+1); h)
[prime_factorization_exists]
cites the following:
5Thm*  a,b:j:{a..b}. {a..b}(trivial_factorization(j)) = j[eval_trivial_factorization]
13Thm*  k:{2...}, n:g:({2..k}).
Thm*   n < k+1
Thm*  
Thm*  (i:{2..k}. ni  0<g(i prime(i))
Thm*  
Thm*  (h:({2..k}). 
Thm*  ({2..k}(g) = {2..k}(h) & is_prime_factorization(2; kh))
[prime_factorization_existsLEMMA]
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
FTA Sections DiscrMathExt Doc