Rank | Theorem | Name |
19 | Thm* a: , b: , f:({a..b }  ), p: .
Thm* is_prime_factorization(a; b; f)
Thm* 
Thm* prime(p)  p |  {a..b }(f)  p {a..b } & 0<f(p) | [prime_factorization_includes_prime_divisors] |
cites the following: |
17 | Thm* p: .
Thm* prime(p)
Thm* 
Thm* ( a,b: , e:({a..b }  ).
Thm* (a<b  p | ( i:{a..b }. e(i))  ( i:{a..b }. p | e(i))) | [prime_divs_mul_via_intseg] |
0 | Thm* f:(A A A), u:A, a,b: , e:({a..b } A).
Thm* b a  (Iter(f;u) i:{a..b }. e(i)) = u | [iter_via_intseg_null] |
11 | Thm* b: . b | 1  prime(b) | [no_nat_prime_divs_one] |
18 | Thm* p: . prime(p)  ( b,z: . p | z b  b 0 & p | z) | [prime_divs_exp] |
11 | Thm* x:{2...}, y: . prime(y)  x | y  x = y  | [prime_nat_divby_self_only] |
10 | Thm* x: . prime(x)  2 x & ( i:{2..x }. i | x) | [prime_nat] |