Rank | Theorem | Name |
19 | Thm* is_prime_factorization(a; b; f) Thm* Thm* prime(p) p | {a..b}(f) p {a..b} & 0<f(p) | [prime_factorization_includes_prime_divisors] |
cites the following: | ||
17 | Thm* prime(p) Thm* Thm* (a,b:, e:({a..b}). Thm* (a<b p | ( i:{a..b}. e(i)) (i:{a..b}. p | e(i))) | [prime_divs_mul_via_intseg] |
0 | Thm* ba (Iter(f;u) i:{a..b}. e(i)) = u | [iter_via_intseg_null] |
11 | [no_nat_prime_divs_one] | |
18 | [prime_divs_exp] | |
11 | [prime_nat_divby_self_only] | |
10 | [prime_nat] |