FTA Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
RankTheoremName
19Thm*  a:b:f:({a..b}), p:.
Thm*  is_prime_factorization(abf)
Thm*  
Thm*  prime(p p | {a..b}(f p  {a..b} & 0<f(p)
[prime_factorization_includes_prime_divisors]
cites the following:
17Thm*  p:
Thm*  prime(p)
Thm*  
Thm*  (a,b:e:({a..b}).
Thm*  (a<b  p | ( i:{a..b}. e(i))  (i:{a..b}. p | e(i)))
[prime_divs_mul_via_intseg]
0Thm*  f:(AAA), u:Aa,b:e:({a..b}A).
Thm*  ba  (Iter(f;ui:{a..b}. e(i)) = u
[iter_via_intseg_null]
11Thm*  b:b | 1  prime(b)[no_nat_prime_divs_one]
18Thm*  p:. prime(p (b,z:p | zb  b  0 & p | z)[prime_divs_exp]
11Thm*  x:{2...}, y:. prime(y x | y  x = y  [prime_nat_divby_self_only]
10Thm*  x:. prime(x 2x & (i:{2..x}. i | x)[prime_nat]
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
FTA Sections DiscrMathExt Doc