| Rank | Theorem | Name |
| 21 | Thm* is_prime_factorization(a; b; g) Thm* Thm* is_prime_factorization(a; b; h) | [prime_factorization_unique] |
| cites the following: | ||
| 19 | Thm* is_prime_factorization(a; b; f) Thm* Thm* prime(p) | [prime_factorization_includes_prime_divisors] |
| 7 | [factor_divides_evalfactorization] | |
| 20 | Thm* is_prime_factorization(a; b; f) Thm* Thm* prime(p) Thm* Thm* p | | [remove_prime_factor] |
| 0 | Thm* 0<f(j) Thm* Thm* 0<g(j) | [reduce_factorization_cancel] |
| 4 | [eval_factorization_nat_plus] | |
| 7 | Thm* 2 | [eval_reduce_factorization_less] |
| 1 | Thm* 0<f(j) Thm* Thm* is_prime_factorization(a; b; f) Thm* Thm* is_prime_factorization(a; b; reduce_factorization(f; j)) | [reduce_fac_pres_isprimefac] |
| 6 | [eval_factorization_one_c] | |
| 6 | [eval_factorization_one_b] |