Rank | Theorem | Name |
21 | Thm* is_prime_factorization(a; b; g) Thm* Thm* is_prime_factorization(a; b; h) {a..b}(g) = {a..b}(h) g = h | [prime_factorization_unique] |
cites the following: | ||
19 | Thm* is_prime_factorization(a; b; f) Thm* Thm* prime(p) p | {a..b}(f) p {a..b} & 0<f(p) | [prime_factorization_includes_prime_divisors] |
7 | [factor_divides_evalfactorization] | |
20 | Thm* is_prime_factorization(a; b; f) Thm* Thm* prime(p) Thm* Thm* p | {a..b}(f) {a..b}(f) = p{a..b}(reduce_factorization(f; p)) | [remove_prime_factor] |
0 | Thm* 0<f(j) Thm* Thm* 0<g(j) reduce_factorization(f; j) = reduce_factorization(g; j) f = g | [reduce_factorization_cancel] |
4 | [eval_factorization_nat_plus] | |
7 | Thm* 2j 0<f(j) {a..b}(reduce_factorization(f; j))<{a..b}(f) | [eval_reduce_factorization_less] |
1 | Thm* 0<f(j) Thm* Thm* is_prime_factorization(a; b; f) Thm* Thm* is_prime_factorization(a; b; reduce_factorization(f; j)) | [reduce_fac_pres_isprimefac] |
6 | [eval_factorization_one_c] | |
6 | [eval_factorization_one_b] |