| Who Cites dequiv? | |
| dequiv | Def DecidableEquiv == T:Type |
| Thm* DecidableEquiv | |
| top | Def Top == Void given Void |
| Thm* Top | |
| assert | Def |
| Thm* | |
| equiv_rel | Def EquivRel x,y:T. E(x;y) == Refl(T;x,y.E(x;y)) & (Sym x,y:T. E(x;y)) & (Trans x,y:T. E(x;y)) |
| Thm* | |
| trans | Def Trans x,y:T. E(x;y) == |
| Thm* | |
| sym | Def Sym x,y:T. E(x;y) == |
| Thm* | |
| refl | Def Refl(T;x,y.E(x;y)) == |
| Thm* |
| Syntax: | DecidableEquiv | has structure: | dequiv{i:l} |
About: