| Who Cites dequiv? |
|
dequiv | Def DecidableEquiv == T:Type E:T T   EquivRel(T)( (_1 E _2)) Top |
| | Thm* DecidableEquiv Type{i'} |
|
top | Def Top == Void given Void |
| | Thm* Top Type |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
equiv_rel | Def EquivRel x,y:T. E(x;y) == Refl(T;x,y.E(x;y)) & (Sym x,y:T. E(x;y)) & (Trans x,y:T. E(x;y)) |
| | Thm* T:Type, E:(T T Prop). (EquivRel x,y:T. E(x,y)) Prop |
|
trans | Def Trans x,y:T. E(x;y) == a,b,c:T. E(a;b)  E(b;c)  E(a;c) |
| | Thm* T:Type, E:(T T Prop). (Trans x,y:T. E(x,y)) Prop |
|
sym | Def Sym x,y:T. E(x;y) == a,b:T. E(a;b)  E(b;a) |
| | Thm* T:Type, E:(T T Prop). (Sym x,y:T. E(x,y)) Prop |
|
refl | Def Refl(T;x,y.E(x;y)) == a:T. E(a;a) |
| | Thm* T:Type, E:(T T Prop). Refl(T;x,y.E(x,y)) Prop |