WhoCites Definitions GenAutomata Sections NuprlLIB Doc

Who Cites rel arg typ?
rel_arg_typDef rel_arg_typ(rn;i;de) == Case(rn) Case eq(Q) = > Q Case R = > (de.rel(R))[i] Default = > False
Thm* r:rel(), de:sig(), i:. tc1(r;de) i < ||r.args|| rel_arg_typ(r.name;i;de) SimpleType
case_default Def Default = > body(value,value) == body
sig_rel Def t.rel == 2of(t)
Thm* t:sig(). t.rel Label(SimpleType List)
select Def l[i] == hd(nth_tl(i;l))
Thm* A:Type, l:A List, n:. 0n n < ||l|| l[n] A
case_relname_other Def Case x = > body(x) cont(x1,z) == (x1.inr(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x1])
case_relname_eq Def Case eq(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z))
case Def Case(value) body == body(value,value)
pi2 Def 2of(t) == t.2
Thm* A:Type, B:(AType), p:(a:AB(a)). 2of(p) B(1of(p))
nth_tl Def nth_tl(n;as) == if n0 as else nth_tl(n-1;tl(as)) fi (recursive)
Thm* A:Type, as:A List, i:. nth_tl(i;as) A List
hd Def hd(l) == Case of l; nil "?" ; h.t h
Thm* A:Type, l:A List. ||l||1 hd(l) A
Thm* A:Type, l:A List. hd(l) A
tl Def tl(l) == Case of l; nil nil ; h.t t
Thm* A:Type, l:A List. tl(l) A List
case_inr Def inr(x) = > body(x) cont(value,contvalue) == InjCase(value; _. cont(contvalue,contvalue); x. body(x))
le_int Def ij == j < i
Thm* i,j:. (ij)
lt_int Def i < j == if i < j true ; false fi
Thm* i,j:. (i < j)
bnot Def b == if b false else true fi
Thm* b:. b

Syntax:rel_arg_typ(rn;i;de) has structure: rel_arg_typ(rn; i; de)

About:
spreadproductlistconsconsnillist_ind
boolbfalsebtrueifthenelseintnatural_numbersubtractlessless_than
tokendecidelambdaapplyfunction
recursive_def_noticeuniversememberimpliesfalseall!abstraction

WhoCites Definitions GenAutomata Sections NuprlLIB Doc