WhoCites Definitions GenAutomata Sections NuprlLIB Doc

Who Cites sublist occurence?
sublist_occurenceDef sublist_occurence(T;L1;L2;f) == increasing(f;||L1||) & (j:||L1||. L1[j] = L2[(f(j))] T)
select Def l[i] == hd(nth_tl(i;l))
Thm* A:Type, l:A List, n:. 0n n < ||l|| l[n] A
length Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive)
Thm* A:Type, l:A List. ||l||
Thm* ||nil||
increasing Def increasing(f;k) == i:(k-1). f(i) < f(i+1)
Thm* k:, f:(k). increasing(f;k) Prop
int_seg Def {i..j} == {k:| i k < j }
Thm* m,n:. {m..n} Type
nth_tl Def nth_tl(n;as) == if n0 as else nth_tl(n-1;tl(as)) fi (recursive)
Thm* A:Type, as:A List, i:. nth_tl(i;as) A List
hd Def hd(l) == Case of l; nil "?" ; h.t h
Thm* A:Type, l:A List. ||l||1 hd(l) A
Thm* A:Type, l:A List. hd(l) A
lelt Def i j < k == ij & j < k
tl Def tl(l) == Case of l; nil nil ; h.t t
Thm* A:Type, l:A List. tl(l) A List
le_int Def ij == j < i
Thm* i,j:. (ij)
le Def AB == B < A
Thm* i,j:. (ij) Prop
lt_int Def i < j == if i < j true ; false fi
Thm* i,j:. (i < j)
bnot Def b == if b false else true fi
Thm* b:. b
not Def A == A False
Thm* A:Prop. (A) Prop

Syntax:sublist_occurence(T;L1;L2;f) has structure: sublist_occurence(T; L1; L2; f)

About:
listnillist_indboolbfalse
btrueifthenelseintnatural_numberaddsubtractless
less_thantokensetapplyfunctionrecursive_def_notice
universeequalmemberpropimpliesandfalseall!abstraction

WhoCites Definitions GenAutomata Sections NuprlLIB Doc