| Who Cites hodd? |
|
hodd | Def odd == n: . odd(n) |
| | Thm* odd (hnum  hbool) |
|
odd | Def odd(n) == if n= 0 then false else  odd(n-1) fi (recursive) |
| | Thm* n: . odd(n)  |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
| | Thm* S |
|
tlambda | Def ( x:T. b(x))(x) == b(x) |
|
bnot | Def  b == if b false else true fi |
| | Thm* b: .  b  |
|
eq_int | Def i= j == if i=j true ; false fi |
| | Thm* i,j: . (i= j)  |
|
bif | Def bif(b; bx.x(bx); by.y(by)) == if b x(*) else y( x.x) fi |
| | Thm* A:Type, b: , x:(b A), y:(( b) A). bif(b; bx.x(bx); by.y(by)) A |
|
le | Def A B == B<A |
| | Thm* i,j: . (i j) Prop |
|
not | Def A == A  False |
| | Thm* A:Prop. ( A) Prop |