is mentioned by
Thm* p q Thm* Thm* (a:, z:{a...}, s:({a...z}{1...n}Peg). Thm* (s is a Hanoi(n disk) seq on a..z & s(a) = (i.p) & s(z) = (i.q) Thm* ( Thm* ((2^n)z-a+1) | [hanoi_sol2_lb] |
Thm* p q Thm* Thm* (a:, z:{a...}, s:({a...z}{1...n}Peg). Thm* (s is a Hanoi(n disk) seq on a..z & s(a) = (i.p) & s(z) = (i.q) Thm* ( Thm* ((x:{a...z-1}, y:{x+1...z}, p',q':Peg. Thm* (((u:{a...x}. s(u,n) = p) & (u:{y...z}. s(u,n) = q) Thm* ((& s(x) = (i.p') {1...n-1}Peg & s(y) = (i.q') {1...n-1}Peg Thm* ((& p p' Thm* ((& q q')) | [hanoi_sol2_analemma] |
Thm* p q Thm* Thm* (a:. Thm* (z:{a...}, s:({a...z}{1...n}Peg). Thm* (s is a Hanoi(n disk) seq on a..z & s(a) = (i.p) & s(z) = (i.q)) | [hanoi_sol2_via_general] |
Thm* z:{a...}, s:({a...z}{1...n}Peg). Thm* s is a Hanoi(n disk) seq on a..z & s(a) = f & s(z) = g | [hanoi_general_exists] |
Thm* p q Thm* Thm* (a:. Thm* (HanoiSTD(n disks; from: p; to: q; indexing from: a)/z,s. Thm* (s is a Hanoi(n disk) seq on a..z Thm* (& s(a) = (i.p) {1...n}Peg Thm* (& s(z) = (i.q) {1...n}Peg) | [hanoi_sol2_ala_generalPROGworks] |
Thm* p q Thm* Thm* (a:. Thm* (z:{a...}, s:({a...z}{1...n}Peg). Thm* (s is a Hanoi(n disk) seq on a..z & s(a) = (i.p) & s(z) = (i.q)) | [hanoi_sol2_ala_general] |
Thm* p q Thm* Thm* (z:{1...}, s:({1...z}{1...n}Peg). Thm* (s is a Hanoi(n disk) seq on 1..z & s(1) = (i.p) & s(z) = (i.q)) | [hanoi_sol2_via_permshift] |
Thm* f(n) g(n) Thm* Thm* (s1:({a...m}{1...n-1}Peg), s2:({m+1...z}{1...n-1}Peg). Thm* (s1 is a Hanoi(n-1 disk) seq on a..m Thm* (& s1(a) = f {1...n-1}Peg Thm* (& s2 is a Hanoi(n-1 disk) seq on m+1..z Thm* (& s2(z) = g {1...n-1}Peg Thm* (& s1(m) = s2(m+1) Thm* (& (i:{1...n-1}. s1(m,i) f(n) & s2(m+1,i) g(n)) Thm* ( Thm* ((HanoiHelper(n; s1; f; s2; g)/r1,r2. Thm* (((r1 @(m) r2) is a Hanoi(n disk) seq on a..z & r1(a) = f & r2(z) = g)) | [hanoi_general_exists_lemma2PROGworks] |
Thm* f(n) g(n) Thm* Thm* (s1:({a...m}{1...n-1}Peg), s2:({m+1...z}{1...n-1}Peg). Thm* (s1 is a Hanoi(n-1 disk) seq on a..m Thm* (& s1(a) = f {1...n-1}Peg Thm* (& s2 is a Hanoi(n-1 disk) seq on m+1..z Thm* (& s2(z) = g {1...n-1}Peg Thm* (& s1(m) = s2(m+1) Thm* (& (i:{1...n-1}. s1(m,i) f(n) & s2(m+1,i) g(n))) Thm* Thm* (r1:({a...m}{1...n}Peg), r2:({m+1...z}{1...n}Peg). Thm* ((r1 @(m) r2) is a Hanoi(n disk) seq on a..z & r1(a) = f & r2(z) = g) | [hanoi_general_exists_lemma2] |
Thm* f(n) = g(n) Thm* Thm* (a:, z:{a...}. Thm* ((s:({a...z}{1...n-1}Peg). Thm* ((s is a Hanoi(n-1 disk) seq on a..z Thm* ((& s(a) = f {1...n-1}Peg Thm* ((& s(z) = g {1...n-1}Peg) Thm* ( Thm* ((s:({a...z}{1...n}Peg). Thm* ((s is a Hanoi(n disk) seq on a..z & s(a) = f & s(z) = g)) | [hanoi_general_exists_lemma1] |
Thm* p q Thm* Thm* (a:, z:{a...}, f:({a...z}Peg). Thm* (f(a) = p & f(z) = q Thm* ( Thm* ((x:{a...z-1}, y:{x+1...z}. Thm* (((u:{a...x}. f(u) = p) Thm* ((& f(x+1) p Thm* ((& f(y-1) q Thm* ((& (u:{y...z}. f(u) = q))) | [hanoi_pegseq_analemma] |
Def == (i:{1...n}. f(i) = g(i) Peg i k) Def == & (i:{1...k-1}. f(i) f(k) Peg & g(i) g(k) Peg) | [hanoi_step_at] |
In prior sections: core int 1 bool 1 int 2 fun 1
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html