Thm* n: , p,q:Peg.
Thm* p q
Thm* 
Thm* ( a: , z:{a...}, s:({a...z} {1...n} Peg).
Thm* (s is a Hanoi(n disk) seq on a..z & s(a) = ( i.p) & s(z) = ( i.q)
Thm* (
Thm* ((2^n) z-a+1) | [hanoi_sol2_lb] |
Thm* a,z: , n: , s:({a...z} {1...n} Peg), n': .
Thm* n n'
Thm* 
Thm* ( h:({n+1...n'} Peg).
Thm* (s is a Hanoi(n disk) seq on a..z
Thm* (
Thm* ((s(?) {to n} h {to n'}) is a Hanoi(n' disk) seq on a..z) | [hanoi_seq_deepen_seq] |
Thm* a,z: , n: , s:({a...z} {1...n} Peg), n': .
Thm* n n'
Thm* 
Thm* ( h:({n+1...n'} Peg), i:{1...n'}.
Thm* (i n  ( x:{a...z}. (s(?) {to n} h {to n'})(x,i) = s(x,i))) | [hanoi_seq_deepen_loweq] |
Thm* a,z: , n: , s:({a...z} {1...n} Peg), n': .
Thm* n n'
Thm* 
Thm* ( h:({n+1...n'} Peg), i:{1...n'}.
Thm* (n<i  ( x:{a...z}. (s(?) {to n} h {to n'})(x,i) = h(i))) | [hanoi_seq_deepen_higheq] |
Thm* a,z: , n: , s:({a...z} {1...n} Peg), n': .
Thm* n n'
Thm* 
Thm* ( h:({n+1...n'} Peg). (s(?) {to n} h {to n'}) {a...z} {1...n'} Peg) | [hanoi_seq_deepen_wf] |
Thm* n: , f:({1...n} Peg), n': .
Thm* n n'
Thm* 
Thm* ( f':({n+1...n'} Peg), i:{1...n'}.
Thm* (n<i  (f {to n} f' {to n'})(i) = f'(i)) | [hanoi_extend_higheq] |
Thm* n: , f:({1...n} Peg), n': .
Thm* n n'
Thm* 
Thm* ( f':({n+1...n'} Peg), i:{1...n'}.
Thm* (i n  (f {to n} f' {to n'})(i) = f(i)) | [hanoi_extend_loweq] |
Thm* n: , f:({1...n} Peg), n': .
Thm* n n'  ( f':({n+1...n'} Peg). (f {to n} f' {to n'}) {1...n'} Peg) | [hanoi_extend_wf] |