| | Some definitions of interest. |
|
| hanoi_PEG | Def Peg == {1...3} |
| | | Thm* Peg Type |
|
| hanoi_seq_deepen | Def (s(?) {to n} h {to n'})(x) == s(x) {to n} h {to n'} |
| | | Thm* a,z: , n: , s:({a...z} {1...n} Peg), n': .
Thm* n n'
Thm* 
Thm* ( h:({n+1...n'} Peg). (s(?) {to n} h {to n'}) {a...z} {1...n'} Peg) |
|
| iff | Def P  Q == (P  Q) & (P  Q) |
| | | Thm* A,B:Prop. (A  B) Prop |
|
| int_iseg | Def {i...j} == {k: | i k & k j } |
| | | Thm* i,j: . {i...j} Type |
|
| nat | Def == {i: | 0 i } |
| | | Thm* Type |
|
| le | Def A B == B<A |
| | | Thm* i,j: . (i j) Prop |
|
| nequal | Def a b T == a = b T |
| | | Thm* A:Type, x,y:A. (x y) Prop |
|
| not | Def A == A  False |
| | | Thm* A:Prop. ( A) Prop |