Rank | Theorem | Name |
3 | Thm* p q Thm* Thm* (a:, z:{a...}, s:({a...z}{1...n}Peg). Thm* (s is a Hanoi(n disk) seq on a..z & s(a) = (i.p) & s(z) = (i.q) Thm* ( Thm* ((x:{a...z-1}, y:{x+1...z}, p',q':Peg. Thm* (((u:{a...x}. s(u,n) = p) & (u:{y...z}. s(u,n) = q) Thm* ((& s(x) = (i.p') {1...n-1}Peg & s(y) = (i.q') {1...n-1}Peg Thm* ((& p p' Thm* ((& q q')) | [hanoi_sol2_analemma] |
cites the following: | ||
0 | Thm* p q Thm* Thm* (a:, z:{a...}, f:({a...z}Peg). Thm* (f(a) = p & f(z) = q Thm* ( Thm* ((x:{a...z-1}, y:{x+1...z}. Thm* (((u:{a...x}. f(u) = p) Thm* ((& f(x+1) p Thm* ((& f(y-1) q Thm* ((& (u:{y...z}. f(u) = q))) | [hanoi_pegseq_analemma] |
2 | Thm* (k:{1...n}. Moving disk k of n takes f to g) Thm* Thm* f(j) g(j) Moving disk j of n takes f to g | [hanoi_step_at_change] |
0 | [hanoi_otherpeg_sym] | |
1 | Thm* Moving disk k of n takes f to g Thm* Thm* f = (i.otherPeg(f(k); g(k))) {1...k-1}Peg | [hanoi_step_at_otherpeg] |
0 | Thm* Moving disk k of n takes f to g Moving disk k of n takes g to f | [hanoi_step_at_sym] |
1 | [hanoi_otherpeg_diff3] | |
2 | [hanoi_otherpeg_diff4] |