LogicSupplement Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Def  !x:AP(x) == x:A. x is the x:AP(x)

is mentioned by

Thm*  A,B:Type, P:(ABProp).
Thm*  (x:A!y:BP(x,y))  (!f:(AB). x:AP(x,f(x)))
[unique_indep_fun_description]
Thm*  (x:A!y:BP(x,y))  (f:(AB). x:AP(x,f(x)))[indep_fun_description]
Thm*  B:(AType), P:(x:AB(x)Prop).
Thm*  (x:A!y:B(x). P(x,y))  (!{f:(x:AB(x))| x:AP(x,f(x)) })
[unique_fun_description2]
Thm*  B:(AType), P:(x:AB(x)Prop).
Thm*  (x:A!y:B(x). P(x,y))  (!f:(x:AB(x)). x:AP(x,f(x)))
[unique_fun_description]
Thm*  (x:A!y:B(x). P(x,y))  (f:(x:AB(x)). x:AP(x,f(x)))[fun_description]
Thm*  (!A (!x:A. True)[inhabited_uniquely_vs_exists_unique]
Thm*  P:(AProp). (!u:AP(u))  (y,z:AP(y P(z y = z)[exists_unique_elim]

Try larger context: DiscrMathExt IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

LogicSupplement Sections DiscrMathExt Doc