(5steps total)
PrintForm
Definitions
Lemmas
LogicSupplement
Sections
DiscrMathExt
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
At:
unique
fun
description2
A
:Type,
B
:(
A
Type),
P
:(
x
:
A
B
(
x
)
Prop).
(
x
:
A
.
!
y
:
B
(
x
).
P
(
x
,
y
))
(
!
{
f
:(
x
:
A
B
(
x
))|
x
:
A
.
P
(
x
,
f
(
x
)) })
By:
SimilarTo
Thm*
B
:(
A
Type),
P
:(
x
:
A
B
(
x
)
Prop).
Thm*
(
x
:
A
.
!
y
:
B
(
x
).
P
(
x
,
y
))
(
!
f
:(
x
:
A
B
(
x
)).
x
:
A
.
P
(
x
,
f
(
x
)))
Generated subgoal:
1
1.
A
: Type
2.
B
:
A
Type
3.
P
:
x
:
A
B
(
x
)
Prop
4.
x
:
A
.
!
y
:
B
(
x
).
P
(
x
,
y
)
5.
!
f
:(
x
:
A
B
(
x
)).
x
:
A
.
P
(
x
,
f
(
x
))
!
{
f
:(
x
:
A
B
(
x
))|
x
:
A
.
P
(
x
,
f
(
x
)) }
4
steps
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
(5steps total)
PrintForm
Definitions
Lemmas
LogicSupplement
Sections
DiscrMathExt
Doc