Definitions
LogicSupplement
Sections
DiscrMathExt
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
equiv_rel
Def
EquivRel
x
,
y
:
T
.
E
(
x
;
y
)
Def
== Refl(
T
;
x
,
y
.
E
(
x
;
y
)) & (Sym
x
,
y
:
T
.
E
(
x
;
y
)) & (Trans
x
,
y
:
T
.
E
(
x
;
y
))
Thm*
T
:Type,
E
:(
T
T
Prop). (EquivRel
x
,
y
:
T
.
E
(
x
,
y
))
Prop
iff
Def
P
Q
== (
P
Q
) & (
P
Q
)
Thm*
A
,
B
:Prop. (
A
B
)
Prop
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Definitions
LogicSupplement
Sections
DiscrMathExt
Doc