Definitions
LogicSupplement
Sections
DiscrMathExt
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
exists_unique
Def
!
x
:
A
.
P
(
x
) ==
x
:
A
. x is the
x
:
A
.
P
(
x
)
Thm*
A
:Type,
P
:(
A
Prop). (
!
x
:
A
.
P
(
x
))
Prop
iff
Def
P
Q
== (
P
Q
) & (
P
Q
)
Thm*
A
,
B
:Prop. (
A
B
)
Prop
inhabited_uniquely
Def
!
A
==
{
x
:
A
|
y
:
A
.
x
=
y
}
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Definitions
LogicSupplement
Sections
DiscrMathExt
Doc