(8steps total)
PrintForm
Definitions
LogicSupplement
Sections
DiscrMathExt
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
At:
exteq
sigma
st
dom
1
1.
A
: Type
2.
B
:
A
Type
3.
P
:
A
Prop
(
i
:{
i
:
A
|
P
(
i
) }
B
(
i
)) =ext {
v
:(
i
:
A
B
(
i
))|
P
(
v
/
x
,
y
. x) }
By:
Analyze THEN New:
z
Analyze
Generated subgoals:
1
4.
z
:
i
:{
i
:
A
|
P
(
i
) }
B
(
i
)
z
{
v
:(
i
:
A
B
(
i
))|
P
(
v
/
x
,
y
. x) }
2
steps
2
4.
z
: {
v
:(
i
:
A
B
(
i
))|
P
(
v
/
x
,
y
. x) }
z
i
:{
i
:
A
|
P
(
i
) }
B
(
i
)
4
steps
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
(8steps total)
PrintForm
Definitions
LogicSupplement
Sections
DiscrMathExt
Doc