(4steps total)
Remark
PrintForm
Definitions
Lemmas
LogicSupplement
Sections
DiscrMathExt
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
At:
fun
description
1
1.
A
: Type
2.
B
:
A
Type
3.
P
:
x
:
A
B
(
x
)
Prop
4.
x
:
A
.
y
:
B
(
x
). y is the
y
:
B
(
x
).
P
(
x
,
y
)
f
:(
x
:
A
B
(
x
)).
x
:
A
.
P
(
x
,
f
(
x
))
By:
FwdThru:
Thm*
(
x
:
A
.
y
:
B
(
x
).
Q
(
x
,
y
))
(
f
:(
x
:
A
B
(
x
)).
x
:
A
.
Q
(
x
,
f
(
x
))) onHyps
[4]
Generated subgoal:
1
5.
f
:(
x
:
A
B
(
x
)).
x
:
A
.
f
(
x
) is the
y
:
B
(
x
).
P
(
x
,
y
)
f
:(
x
:
A
B
(
x
)).
x
:
A
.
P
(
x
,
f
(
x
))
2
steps
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
(4steps total)
Remark
PrintForm
Definitions
Lemmas
LogicSupplement
Sections
DiscrMathExt
Doc