WhoCites Definitions MarkB generic Sections NuprlLIB Doc

Who Cites count pairs?
count_pairsDef count(x < y in L | P(x;y)) == sum(if (i < j)P(L[i];L[j]) 1 else 0 fi | i < ||L||; j < ||L||)
Thm* T:Type, L:T List, P:(TT). count(x < y in L | P(x,y))
select Def l[i] == hd(nth_tl(i;l))
Thm* A:Type, l:A List, n:. 0n n < ||l|| l[n] A
nth_tl Def nth_tl(n;as) == if n0 as else nth_tl(n-1;tl(as)) fi (recursive)
Thm* A:Type, as:A List, i:. nth_tl(i;as) A List
le_int Def ij == j < i
Thm* i,j:. (ij)
lt_int Def i < j == if i < j true ; false fi
Thm* i,j:. (i < j)
band Def pq == if p q else false fi
Thm* p,q:. (pq)
length Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive)
Thm* A:Type, l:A List. ||l||
Thm* ||nil||
double_sum Def sum(f(x;y) | x < n; y < m) == sum(sum(f(x;y) | y < m) | x < n)
Thm* n,m:, f:(nm). sum(f(x,y) | x < n; y < m)
hd Def hd(l) == Case of l; nil "?" ; h.t h
Thm* A:Type, l:A List. ||l||1 hd(l) A
Thm* A:Type, l:A List. hd(l) A
sum Def sum(f(x) | x < k) == primrec(k;0;x,n. n+f(x))
Thm* n:, f:(n). sum(f(x) | x < n)
tl Def tl(l) == Case of l; nil nil ; h.t t
Thm* A:Type, l:A List. tl(l) A List
primrec Def primrec(n;b;c) == if n=0 b else c(n-1,primrec(n-1;b;c)) fi (recursive)
Thm* T:Type, n:, b:T, c:(nTT). primrec(n;b;c) T
bnot Def b == if b false else true fi
Thm* b:. b
eq_int Def i=j == if i=j true ; false fi
Thm* i,j:. (i=j)

Syntax:count(x < y in L | P(x;y)) has structure: count_pairs(L; x,y.P(x;y))

About:
listnillist_indboolbfalse
btrueifthenelseintnatural_numberaddsubtractint_eq
lessless_thantokenlambdaapplyfunction
recursive_def_noticeuniversememberimpliesall!abstraction

WhoCites Definitions MarkB generic Sections NuprlLIB Doc