| Who Cites rel star? |
|
rel_star | Def (R^*)(x,y) == n: . x rel_exp(T;R;n) y |
|
| Thm* T:Type, R:(T T Prop). (R^*) T T Prop |
|
rel_exp | Def rel_exp(T;R;n) == if n= 0 x,y. x = y T else x,y. z:T. (x R z) & (z rel_exp(T;R;n-1) y) fi (recursive) |
|
| Thm* n: , T:Type, R:(T T Prop). rel_exp(T;R;n) T T Prop |
|
nat | Def == {i: | 0 i } |
|
| Thm* Type |
|
eq_int | Def i= j == if i=j true ; false fi |
|
| Thm* i,j: . (i= j)  |
|
le | Def A B == B < A |
|
| Thm* i,j: . (i j) Prop |
|
not | Def A == A  False |
|
| Thm* A:Prop. ( A) Prop |