Who Cites swap adjacent? | |
swap_adjacent | Def swap adjacent[P(x;y)](L1,L2) == i:(||L1||-1). P(L1[i];L1[(i+1)]) & L2 = swap(L1;i;i+1) A List |
Thm* A:Type, P:(AAProp). swap adjacent[P(x,y)] (A List)(A List)Prop | |
swap | Def swap(L;i;j) == (L o (i, j)) |
Thm* T:Type, L:T List, i,j:||L||. swap(L;i;j) T List | |
permute_list | Def (L o f) == mklist(||L||;i.L[(f(i))]) |
Thm* T:Type, L:T List, f:(||L||||L||). (L o f) T List | |
select | Def l[i] == hd(nth_tl(i;l)) |
Thm* A:Type, l:A List, n:. 0n n < ||l|| l[n] A | |
length | Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive) |
Thm* A:Type, l:A List. ||l|| | |
Thm* ||nil|| | |
int_seg | Def {i..j} == {k:| i k < j } |
Thm* m,n:. {m..n} Type | |
flip | Def (i, j)(x) == if x=ij ;x=ji else x fi |
Thm* k:, i,j:k. (i, j) kk | |
nth_tl | Def nth_tl(n;as) == if n0 as else nth_tl(n-1;tl(as)) fi (recursive) |
Thm* A:Type, as:A List, i:. nth_tl(i;as) A List | |
hd | Def hd(l) == Case of l; nil "?" ; h.t h |
Thm* A:Type, l:A List. ||l||1 hd(l) A | |
Thm* A:Type, l:A List. hd(l) A | |
lelt | Def i j < k == ij & j < k |
mklist | Def mklist(n;f) == primrec(n;nil;i,l. l @ [(f(i))]) |
Thm* T:Type, n:, f:(nT). mklist(n;f) T List | |
primrec | Def primrec(n;b;c) == if n=0 b else c(n-1,primrec(n-1;b;c)) fi (recursive) |
Thm* T:Type, n:, b:T, c:(nTT). primrec(n;b;c) T | |
eq_int | Def i=j == if i=j true ; false fi |
Thm* i,j:. (i=j) | |
tl | Def tl(l) == Case of l; nil nil ; h.t t |
Thm* A:Type, l:A List. tl(l) A List | |
le_int | Def ij == j < i |
Thm* i,j:. (ij) | |
le | Def AB == B < A |
Thm* i,j:. (ij) Prop | |
append | Def as @ bs == Case of as; nil bs ; a.as' [a / (as' @ bs)] (recursive) |
Thm* T:Type, as,bs:T List. (as @ bs) T List | |
lt_int | Def i < j == if i < j true ; false fi |
Thm* i,j:. (i < j) | |
bnot | Def b == if b false else true fi |
Thm* b:. b | |
not | Def A == A False |
Thm* A:Prop. (A) Prop |
Syntax: | swap adjacent[P(x;y)] | has structure: | swap_adjacent(A; x,y.P(x;y)) |
About: