is mentioned by
[sfa_doc_ycomb_factorial_typing] | |
[sfa_doc_factbody_polytyping] | |
[sfa_doc_funeq_example1] | |
[sfa_doc_sqtype_ctr_example_part2] | |
[sfa_doc_nat_sqrt] | |
[sfa_doc_sequence_rel_wf] | |
Thm* (x.Canil 0 Thm* (x.Cau.v, rec:r InjCase(if u<r inl(*) ; inr(.*) fi; a. r; b. u+1)) Thm* = Thm* ext{sfa_doc_find_small_greater_bound} Thm* (k:. x:(k List){y:(k+1)| y greater-bounds x }) | [sfa_doc_find_small_greater_bound_extr_eq] |
Thm* = Thm* ext{sfa_doc_find_greater_bound_stupidly} Thm* k:x:(k List){y:(k+1)| y greater-bounds x } | [sfa_doc_find_greater_bound_stupidly_extr_eq] |
[sfa_doc_find_greater_bound_stupidly] | |
[sfa_doc_find_small_greater_bound] | |
Thm* (x:. f zero beyond x) & (x:. g zero beyond x) Thm* Thm* (x:. (i.if i even f(i) else g(i) fi) zero beyond x) | [sfa_doc_alternate_zero_beyond] |
[sfa_doc_max_int_wf] | |
[sfa_doc_props_as_types_example1_wf] | |
[sfa_doc_or_dec] | |
Thm* (n:. f(n) = 0) Thm* Thm* (n:. if f(n)=0 False else C:Prop{1}. C fi) Prop{1} | [sfa_doc_predicativity_sample8] |
[sfa_doc_ntuple_contains_wf] | |
[sfa_doc_ntuple_is_prod] | |
[sfa_doc_ntuple_wf] | |
[sfa_doc_factorial2_wf] | |
[sfa_doc_factorial_wf] | |
[sfa_doc_cand_example] | |
[kleene_minimize_is_lb] | |
[kleene_minimize_is_fp] | |
[kleene_minimize_wf] | |
[kleene_tail] | |
[sfa_doc_props_as_types_example1] | |
[sfa_doc_oparm_sample2] | |
[sfa_doc_oparm_sample1] | |
[sfa_doc_indscheme] | |
Def == n = 1 & P(X) n2 & (X/a,rest. P(a) ( u in rest: A^(n-1). P(u))) Def (recursive) | [sfa_doc_ntuple_contains] |
In prior sections: int 1 bool 1 int 2 list 1 sqequal 1
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html