Definitions NuprlPrimitives Sections NuprlLIB Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
sfa_doc_ntupleDef A^n == if n=0 Unit ; n=1 A else A(A^(n-1)) fi  (recursive)
Thm* A:Type, n:. (A^n Type
eq_intDef i=j == if i=j true ; false fi
Thm* i,j:. (i=j 
natDef  == {i:| 0i }
Thm*   Type
sfa_doc_exteqDef A =ext B == (X:AX  B) & (X:BX  A)

About:
productboolbfalsebtrueifthenelseunitintnatural_number
subtractint_eqsetrecursive_def_notice
sfa_doc_extequniversememberandall!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions NuprlPrimitives Sections NuprlLIB Doc